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Abstract: Neurons are cellular compartments possessing branching morpholo-
gies, with information processing functionality, and the ability to communicate
with each other via synaptic junctions (e.g. neurons come within less than a
nano-meter of each other in a specialized way). A collection of neurons in each
part of the brain form a dense forest of such branching structures, with myr-
iad inter-twined branches, inter-neuron synaptic connections, and a packing
density that leaves only 5% - 10% volume fraction of exterior-cellular space.
Small-scale variations in branching morphology of neurons and inter-neuron
spacing can exert dramatically different electrical effects that are overlooked
by models that treat dendrites as cylindrical compartments in one dimension
with lumped parameters. In this paper, we address the problems of generat-
ing topologically accurate and spatially realistic boundary element meshes of
a forest of neuronal membranes for analyzing their collective electrodynamic
properties through simulation. We provide a robust multi-surface reconstruc-
tion and quality meshing solution for the forest of densely packed multiple
branched structures starting from a stack of segmented 2D serial sections
from electron microscopy imaging. The entire 3D domain is about 8 cubic mi-
crons, with inter-neuron spacing down to sub-nanometers, adding additional
complexity to the robust reconstruction and meshing problem.

1 Introduction

Biological modeling problems have long been an inspiration for geometry pro-
cessing and meshing research. A relatively recent technique known as serial
section transmission electron microscopy (ssTEM) presents a new set of chal-
lenges to the computational geometry community. The technique employs a
CCD camera to capture high resolution images of parallel slices of a collec-
tion of cells, usually neurons. The resolution on a single image slice is 5-10
nanometers, small enough to identify features on the boundaries of the cells,
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Fig. 1. Neuronal modeling from imaging uses serial section transmission electron
microscopy (ssTEM), producing a stack of image slices. [18, 36] The imaging data is
courtesy of Dr. Kristen Harris from the Section of Neurobiology at UT Austin. On
the left, a single slice is shown with contours representing cell boundaries shown in
red. The contours are tagged based on the neuronal process they belong to - purple
for dendrites, green for axons, yellow for glial - as shown on the right. The tagged
contours are used for accurate surface reconstruction, such as the purple dendrite
model shown here, so that surface area, volume, and other properties of the cells
can be calculated.

as well as organelles within the cells. [18, 36] Trained neuro-anatomy aware
users can approximate the cell boundaries by visual inspection and label their
polygonal contours consistently through the stack so that slice images of a sin-
gle cell (dendrite, glial, axon, etc.) can be traced through the entire volume,
as shown in Figure 1. This suggests the following computational problem:
develop a method to create a watertight mesh of a multi-component, com-
pact 2-manifold passing through the labeled boundaries on each slice with
biologically-accurate topology and spatially-accurate geometry. A sample of
meshes created by our lab solving this problem are shown in Figure 2. The
meshes will be used to research quantitative morphology [21] and to calibrate
time-dependent electrophysiological simulation of voltage potentials [33]. We
discuss this further in Section 5.

The unique challenge in processing and modeling neuronal cell data is the
multi-component nature of the problem. Reconstruction of a single compo-
nent surface from 2D slices has been heavily researched in recent decades. A
seminal paper in this vein is the work of Fuchs, Kedem, and Uselton [22] which
focused on triangulating a stack of polygonal contours using a toroidal graph
to guide construction. Christiansen and Sederberg [15] helped to characterize
the branching problem and potentially ambiguous situations that may arise.
Meyers, Skinner and Sloan [32] identified the subproblems of correspondence,
tiling, branching and surface-fitting and gave a resolution based on a mini-
mum spanning tree. Barequet and Sharir [7] developed an algorithm focused
on medical applications such as Computerized Tomography (CT) and Mag-
netic Resonance Imaging (MRI); this was expanded upon by Bajaj, Coyle
and Lin [4] who introduced the use of the medial axis to aid in topologically
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accurate surface meshing. Similar approaches used the Voronoi diagram [34]
or a discrete distance function [28] to guide reconstruction. Barequet et al. [6]
have also used the straight skeleton to aid in the case of nested contours. Re-
lated to these surface meshing approaches are techniques for volume meshing
[9, 24, 14], non-linear surface fitting [11, 27, 37, 8], and recently non-parallel
plane methods [10, 31].

Unfortunately, resolving the multi-component problem by separating it
into independent single-component problems is not sufficient to guarantee
an appropriate solution for neuronal models. Image data reveals that neurons
have widely varying cross-sectional areas and boundary shapes and are packed
very densely (an example is shown in Figure 3), with as little as 5-10% of the
image representing extra-cellular space [26, 35]. Even if the contours approxi-
mating the boundaries on each slice are non-overlapping, an under-constrained
surface reconstruction might create intersections in three dimensions.

(a) (b)

Fig. 2. The approach provided in this paper allows for quality and accurate meshing
of intertwined and branching structures, such as the neuronal meshes shown here.
(a) A meshed dendrite is shown in grey with an adjacent axon passing nearby, shown
in green. (b) A zoomed in portion of the meshes shows the triangles of the mesh
are of good quality, making the mesh fit for electro-physiological simulations.

In this paper, we present a solution to the general problem of simultane-
ously reconstructing a densely packed forest of intertwined branching surfaces
from point samples lying on a finite set of parallel slices through the volume.
Our approach uses the medial axis on each slice to help construct a 3D fenc-
ing between contours, thereby preventing the intersection of distinct surfaces.
In Section 2, we formalize the problem and provide additional explanation
of background concepts. In Section 3, we describe in detail an algorithm to
resolve the problem and prove its correctness. In Section 4, we show some
initial mesh results. Finally, in Section 5 we conclude and describe the various
uses these types of meshes will have in our future work.
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(b) (c) (d)(a)

Fig. 3. A visualization of a portion of neuronal data indicating the difficulty in
the forest of branching structures problem. The reconstruction visualization was
prepared by Justin Kinney, Thomas Bartol, and Terrence Sejnowski of the Salk
Institute using our tiling program [4]. (a,b) Surfaces representing dendrites and
axons, shown in yellow and green, respectively. (c) Surfaces representing glial cells
are shown in purple in this view, along with some of the axonal and dendritic surfaces
for reference. (d) All three types of surfaces share this densely packed volume. Since
each surface is reconstructed independently of the others, we have to resolve any
possible intersections that result when the individual models are assembled in the
same volume. Here, the green surface has been made partially transparent to show
how the surfaces wind and branch around each other. The glial cells are present but
not visible in this view.

2 Problem Statement and Background

In Section 2.1, we formally state the multi-component reconstruction problem
we aim to solve and fix notation for use in the description of our solution. In
Section 2.2 we describe the three main problems of the single component
problem - correspondence, tiling, and branching - which are relevant to the
multi-component problem. In Section 2.3 we explain the basic theory behind
the medial axis which is used prominently in our solution.

2.1 Formal Problem Statement

With the goal in mind of designing an algorithm for neuronal modeling, we
now describe the more general surface reconstruction problem we aim to solve.

Suppose we are given a positive integer M and the input ({Zi}, {gi}, {cj
i},

G) as follows:

• Input 1: A set of M horizontal planes Z1, . . . ZM where Zi is the plane
z = zi ∈ R with z1 < · · · < zM .

• Input 2: A set of curves (contours) in each Zi plane described implicitly
by gi(x, y) = 0.

• Input 3: A list {cj
i} of the contours of the set gi(x, y) = 0 where cj

i denotes
the jth contour on the plane Zi.
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• Input 4: A directed graph G with vertices
⋃

i,j cj
i and edges only pointing

to an element of list index incremented by one. That is, every edge of G
can be written as (cj1

i , cj2
i+1) for some indices i, j1, and j2.

Our goal is to construct a smooth function g : R3 → R such that the following
properties hold:

• Property 1: The surface g(x, y, z) = 0 is a compact 2-manifold.
• Property 2: The function g restricts to gi on Zi. That is, for all i,

g(x, y, zi) = gi(x, y) for all (x, y) ∈ R2.
• Property 3: The surface g(x, y, z) = 0 has local connectivity correspond-

ing to the graph G. That is, if (cj1
i , cj2

i+1) is an edge in G, then cj1
i and

cj2
i+1 are homologous (meaning one smoothly deforms into the other) on

the surface
{(x, y, z) : g(x, y, z) = 0, z ∈ [zi, zi+1]}

We note that the set {g−1(0)} is the desired surface passing through the
contours with the correct connectivity. A general analytical solution to this
problem is difficult and unnecessary for implementation, hence we make the
following simplifying assumptions based on the application context.

Definition 1 (adapted from [1]) A homeomorphism h of R3 is isotopic to
the identity if there is a homotopy H : R3 × [0, 1] → R3 such that for each
t ∈ [0, 1], ht := H(·, t) : R3 → R3 is a homeomorphism, h0 is the identity and
h1 = h. A mesh M ⊂ R3 of a surface S ⊂ R3 is called an isotopic mesh
if and only if there exists a homeomorphism h of R3 carrying M to S with h
isotopic to the identity.

• Assumption 1: The contours are described by simple polygons whose
vertices lie on the contour. If the geometry of a particular polygon needs
to be refined, the appropriate gi can be referenced to increase the sampling
density.

• Assumption 2: If M is a compact piecewise linear 2-manifold such that
it restricts to the contours on each slice and has local connectivity cor-
responding to the graph G, then M is an isotopic mesh of the surface
g(x, y, z) = 0.

• Assumption 3: The distance between consecutive zi values is small
enough that the slice sampling of each component in the surface g(x, y, z) =
0 meets the requirements of the single-component meshing algorithm.

Each assumption is based on practical considerations from neuronal data.
To satisfy Assumption 1, we fit each polygonal contour data as tagged by
biologists with a regular algebraic spline curve called an A-spline. By using
the error-bounded spline method described in [5], we can construct smooth
approximations of the contours while preventing overlaps between adjacent
contours. The splines are defined locally based on a scaffolding mesh, allow-
ing us to efficiently increase the sampling of a contour in a particular region
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if needed. Assumption 2 is made to distinguish the surface meshing problem
from the smooth surface construction problem. In this paper, we are only
interested in how to create an isotopic mesh of the smooth surface approxi-
mation and leave the surface fitting to future work. Assumption 3 is stated so
that we can tackle the multi-component problem without inheriting existing
difficulties from the single component problem. As is discussed in [4], it is
desirable to produce a mesh such that any vertical line between two adjacent
slices passes through the mesh at most once. We clarify this criterion in the
next subsection.

2.2 Correspondence, Tiling, and Branching

The single component surface reconstruction problem faces three major sub-
problems: the correspondence problem, the tiling problem and the branching
problem. Our solution to the multi-component problem requires an effective
single component solver, hence we will review the three problem types here.
The single component solver we use is denoted SingleSurfRecon and re-
solves the problems in full generality under the assumptions previously stated.
The method is summarized below, but is given in full detail in [4]. To describe
the problems, we consider two planes Z1 and Z2 with z1 < z2 and let {cj

1},
{ck

2} denote the lists of contours in the respective planes. Figure 4 illustrates
some of the difficulties in meshing such intricate data.

(a) (b)

Fig. 4. (a) The region between two consecutive slices is shown, with portions of
many dendrites (grey) and axons (green) present. The mesh has been filled in and
smoothed slightly for the purpose of visualization. The contours on the top plane
must be tiled to the contours on the bottom, subject to the correspondence con-
straints of the data. (b) Zooming in on a portion of the previous image reveals that
branching has occurred in an axon and dendrite in close geometric proximity, re-
sulting in this unwanted surface intersection. We will present a method for detecting
and removing such intersections in Section 3.

The correspondence problem is to decide how the contours of {cj
1} will

match up to the contours of {ck
2}. This requires either a priori knowledge of
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the contours’ connectivity or a geometric criterion for declaring correspon-
dence. In the context of our problem domain, the correspondence problem for
SingleSurfRecon is resolved by consulting the graph G as it prescribes the
connectivity between contours.

The tiling problem is to decide, given contours c1 ∈ {cj
1} and c2 ∈ {ck

2},
how c1 and c2 will be joined in the interslice region. In the context of meshing,
c1 and c2 are given as polygons and the problem is to decide how to add
edges between them so that a suitable mesh of the ribbon surface between
the contours is produced. A line segment connecting c1 to c2 is called a slice
chord and a triangle formed by two slice chords an edge of a contour is called
a tiling triangle. Even in very simple cases, there are many choices available
for how to choose slice chords and tiling triangles. One resolution to this
problem is to define a quality measure on possible tilings and seek a tiling
with the optimal quality [22, 15]. A summary of different quality metrics used
in early methods is given in [32]. Alternative approaches, such as the one we
use, project contours from Z2 to Z1 and use planar geometry properties to
lift a watertight surface mesh from the projection [4, 34, 28, 6].

The choice of tiling method is highly relevant to the types of guarantees
one can provide on the output meshes. We have selected the method of [4]
because it only outputs surfaces that meet the following three criteria.

• Criterion 1: The reconstructed surface forms a piecewise closed surface
of polyhedra.

• Criterion 2: Any vertical (meaning parallel to the z axis) line segment
between two adjacent slices intersecting the reconstructed surface does so
at exactly one point or along exactly one line segment.

• Criterion 3: Resampling of the reconstructed surface on any slice repro-
duces the original contours.

Criterion 1 ensures that self-intersecting surfaces and other incorrect meshes
are not formed. Criterion 3 ensures that all the contours are interpolated and
no new ones are created. Criterion 2 is especially important because it ensures
that the reconstructed surface is functional from its nearest planes. That is,
barring the case of vertical surface patches, the projection of any triangle
in the mesh to either of its two nearest Zi planes is a one-to-one mapping.
This prevents unlikely topologies from being formed and aids in the proof
of the correctness of the multi-component method as discussed in Section
3.7. We note that Criterion 2 may not be satisfiable if the distance between
consecutive zi values is too large relative to the surface feature size, however,
by Assumption 3, this is not the case. In practice, exceptions to Assumption
3 are rare and therefore Criterion 2 is not particularly restrictive on the input
type.

We will now summarize the approach that the SingleSurfRecon algo-
rithm uses to resolve the tiling problem. We will appeal to intuitive notions
of the left side and right side of a vertex on a contour relative to its clockwise
(CW) or counterclockwise (CCW) orientation; these definitions are made ex-
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plicit in [4]. Let {ck
2
′} denote the projection of {ck

2} vertically onto Z1. We
compute the points of intersection between {cj

1} and {ck
2
′}; without loss of

generality we assume that these points of intersection are vertices on contours
in both sets. Such vertices that are common to both sets are called an overlap-
ping vertices; all other vertices are called non-overlapping. If a tiling of {cj

1}
and {ck

2} satisfies the three Criteria, the following two theorems must hold.

Theorem 1. ([4], Theorem 2) Let v be a vertex on a contour in c1 ∈ {cj
1}

and T a slice chord from v. (i) If v is a non-overlapping vertex, the projection
of T onto Z1 is contained entirely on one side (right or left) of c1. The side
is determined by the orientation of the nearest enclosing contour from the set
{ck

2} when v is projected to Z2. (ii) If v is an overlapping vertex, v also belongs
to some c′2 ∈ {ck

2
′} by hypothesis. In this case, the projection of T onto Z1

does not intersect the region to the left of both c1 and c′2 at v, nor the region
to the right of both c1 and c′2 at v.

Theorem 2. ([4], Theorem 4) Let T be a slice chord and c1 ∈ {cj
1}. Then the

projection of T onto Z1 cannot intersect both the inside and outside of c1

The tiling algorithm proceeds as follows. For each vertex v ∈ {cj
1}, make

a list of all the slice chords that could be formed to a vertex of {ck
2} (based

on the resolution of the correspondence problem). Select the shortest length
chord from this list which satisfies the results of Theorems 1 and 2. If no
chord from the list satisfies both Theorems, tag the vertex as “untiled.” The
boundaries of untiled regions are later collected and meshed separately while
resolving the branching problem.

The branching problem arises when the result of the correspondence prob-
lem yields a matching of more than one contour in {cj

1} to any number of con-
tours in {ck

2} (or vice versa). Solutions to the problem include adding edges to
the contours on one of the planes or adding vertices in between the planes to
create an appropriate mesh. Since the former approach violates Criterion 3,
we employ the latter. The branching problem occurs only in regions previously
tagged as “untiled” by SingleSurfRecon, so we collect the boundaries of
these regions and project them to a plane half way between the two planes
in consideration. We triangulate these untiled regions based on their Edge
Voronoi Diagram using the algorithm of Lee [29]. Any new vertices added are
given a z value of .5(z1 + z2). A summary of alternative approaches to the
branching problem and further details are given in [4].

The output of SingleSurfRecon is a mesh with the desired Properties
and satisfying the given Criteria. In practice, SingleSurfRecon can be im-
plemented in a numerically stable manner and will provide an output for many
types of real data.

2.3 Medial Axis

The main tool employed by our algorithm to ensure accurate surface recon-
struction is the medial axis of the region exterior to the contours. We give a
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Fig. 5. A collection of contours representing cell boundaries and their interiors are
shown in red along with the approximate medial axis of intracellular space MP

shown in blue.

thorough explanation of the medial axis in Appendix A. The medial axis of
a set O is often approximated based on a point sampling P of the boundary
∂O and the Voronoi and Delaunay diagrams Vor P and Del P . A definition
of these diagrams and how to compute them can be found in any standard
computational geometry textbook, e.g. [19]. The medial axis is approximated
by the graph of the vertices of Vor P along with those edges of Vor P not
intersecting the contours. We denote this graph MP ; an example is shown
in Figure 5. For 2D cellular contour data, MP will have one component for
each cell interior plus a component for the extracellular region, assuming P
is a sufficiently dense sampling of ∂O. We discuss sampling density and our
robust medial axis computation method further in Section 3.2.

3 Algorithm

In this section we describe an algorithm to solve the multi-component problem
under the Assumptions given in Section 2.1. In the next six subsections, we
will explain the input to the algorithm and its five major steps. We conclude
this section with a proof of the correctness of the approach.

3.1 Algorithm input

As stated in Section 2.1, our input is the following objects: ({Zi}, {gi}, {cj
i},

G). By our stated Assumptions, we may suppose that the contours {cj
i} are

simple polygons with sufficiently dense sampling of the level sets gi(x, y) = 0.
Define Pi = {v : ∃j such that v is a vertex on cj

i}. We pass these polygonal
contours and the associated point sets Pi to our algorithm instead of the
functions gi.

For ease of description and to maintain consistency with our neuronal data,
we explain the algorithm for the case where G has just two components, with
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one colored yellow and one colored green. Each contour can thus be uniquely
assigned as belonging to the set of yellow contours Y C or green contours GC,
i.e.

{cj
i} = Y C

∐
GC

The notation we will use for calling the algorithm with this input is

MultiSurfRecon
(
{Zi},

{
cj
i

}
, {Pi}, G

)
3.2 Step 1: Construct and partition 2D medial axes

Overview

Compute the approximated medial axis MPi for each 1 ≤ i ≤ M and discard
the portions interior to the contours. Each remaining edge e separates two
unique contours, call them ce1 and ce2. Partition these edges into three sets:

EY Y = {e : ce1, ce2 ∈ Y C}, EGG = {e : ce1, ce2 ∈ GC},

EGY = {e : ce1 ∈ Y C, ce2 ∈ GC or ce1 ∈ GC, ce2 ∈ Y C}

Details

It is crucial that the medial axes on each slice be computed robustly and with
topological accuracy for the remainder of the algorithm to work. Thus, we
turn to a criterion established by Edelsbrunner and Shah known as the closed
ball property [20] which we state here for polygonal contours in a plane. Let
P be the vertices of all the contours and Σ the union of all the contours on a
particular plane. A Voronoi object V from Vor P of dimension k satisfies the
closed ball property if and only if V ∩Σ = ∅ or V ∩Σ is homeomorphic to a
closed ball of dimension k−1. If all V ∈ Vor P satisfy the closed ball property
and Σ intersects each V transversally, then Σ is a subgraph of Del P [20].
This implies that MP is a subgraph of Vor P . Cheng, Dey, Ramos, and Ray
used this criterion to create Delaunay-conforming meshes without approxi-
mating local feature size [13]. We provided an efficient algorithm exploiting
their approach for use with image data [25] and we adopt that algorithm for
computation of MP . Figure 5 shows a zoomed in picture of a slice of extracted
contours with MP displayed.

By construction, MP is a multi-component piecewise linear graph. We
discard all components of MP which are interior to the contours, leaving a
single medial axis approximation of extracellular space. From this point on,
we will take MP to mean this single connected graph. Each edge of MP is a
Voronoi edge and thus its dual Delaunay edge connects two points of P . We
assign each edge to EGG, EY Y , or EGY based on whether its associated points
of P are both on green contours, yellow contours, or one of each, respectively.
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3.3 Step 2: Construct medial surface

Overview

Dilate the edges in EGY so that they form contours and color these con-
tours red. Run SingleSurfRecon on the red contours, producing a partial,
approximate medial surface MS.

Details

On each plane, we consider only those edges of MP which belong to EGY .
We dilate EGY by setting a distance parameter ε and defining the contours
to be the locus of points at distance ε from EGY . For small enough values
of ε, this produces a collection of contours to which we assign the color red.
We denote the dilated contours RC. Once we have done this for all the slices,
we call SingleSurfRecon on the whole set RC to produce a partial medial
surface approximation denoted MS. In this computation, we also compute
the intersection of MS with each intermediate plane z = .5(zi + zi+1).

3.4 Step 3: Create single component surfaces

Run SingleSurfRecon on Y C and GC separately, producing meshes of the
yellow and green contours. In this run, we also keep a list of those i values for
which vertices were added on the intermediate plane z = .5(zi + zi+1). This
occurs whenever there are dissimilar contours or branching in a portion of the
tiling.

3.5 Step 4: Remove overlaps on intermediate planes

Overview

For those i values on the list created in Step 3, compute the yellow, green, and
red contours that occur on plane z = .5(zi + zi+1), which we denote Zi,i+1.
Do a plane sweep to detect overlaps between contours and remove them so
that the mesh now avoids overlaps on each intermediate plane. Output the
modified meshes of Y C and GC.

Details

From Steps 2 and 3, we have calculated red, yellow, and green contours on each
intermediate plane Zi,i+1. Geometrical problems may arise on those Zi,i+1

planes which have yellow and/or green vertices. For those planes, we do a
plane sweep to detect overlap regions. We distinguish between two types of
overlaps: simple transversal overlaps and exotic overlaps. A simple transversal
overlap is one in which the border of the region is exactly two colors and
each of these colors forms a connected component of the border. We resolve
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simple transversal overlaps by first computing the medial axis associated to
the interior of the overlap. This is then used as a dividing line to guide vertex
movement; the overlap is resolved by moving each vertex on the boundary
across this axis. Note that this method does not add or remove vertices, does
not change the mesh connectivity, and does not change the z value of any
vertex.

(c)(b)(a)

Fig. 6. (a) A few overlaps have occurred on an intermediate plane Zi,i+1 between
green contours, yellow contours, and red medial surface contours. We attempt to
resolve them by searching for simple transversal overlaps such as the green/yellow
overlap in this case. (b) After removing the green/yellow overlap, we are left with
only red/yellow and red/green overlaps. (c) Removing the final overlaps, all the
contours are separated.

z
i+1

z
i,i+1

(a) (b) (c) (d)

z
i

Fig. 7. A toy example of how our algorithm works in the case of exotic overlaps (see
Section 3.5). (a) Green and yellow contours are detected in adjacent planes Zi, Zi+1

and the medial axis MP in each plane is computed, shown in red. Those portions
of the medial axis which lie between same color contours are discarded, such as the
dashed red portion in the upper plane. (b) An approximate medial surface MS is
computed by dilating the MP into contours and calling SingleSurfRecon. The
intersection of MS and the separately computed green and yellow surfaces with the
intermediate plane Zi,i+1 is shown. The overlap of the contours cannot be resolved
by removing simple transversal overlaps. (c) To remove the overlap, we move the
green vertices on Zi,i+1 to a lower z value and the yellow vertices to a higher z value,
without changing connectivity of the mesh. We show the intersections of the yellow
and green surfaces on the two intermediate planes where the vertices have been
moved. (d) The skeletons of the yellow and green meshes are shown to illustrate
that the overall topology is now correct and no geometrical overlaps occur.
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An exotic overlap in a region Q can often be resolved by finding simple
transversal overlaps within Q and resolving them in the manner described
above. Such a case is shown in Figure 6. If this is not possible, we resolve the
exotic overlap by changing the z values of vertices in the overlap region to
either .25(zi + zi+1) or .75(zi + zi+1). An example of such a case and how it
is resolved is shown in Figure 7.

3.6 Step 5: Quality improvement

We decimate and improve the quality of our output meshes in the following
manner. For decimation, we first do edge contractions based on the Delau-
nay diagram, using the QSlim software by Michael Garland [23]. We then do
normal-based triangle decimation based on the method presented in [3]. Fi-
nally, we improve the shape of triangles in the mesh using a geometric flow
technique [38] which is a library in Level Set Boundary Interior and Exte-
rior Mesher (LBIE) [16], part of the Volume Rover (VolRover) [17] software
developed by our lab.

3.7 Correctness of the Algorithm

The goal of MultiSurfRecon is to output an isotopic mesh M of the multi-
component surface S representing neuronal membranes such that the Haus-
dorff distance between M and S is small. Since SingleSurfRecon produces
such meshes for individual components, the main question is whether the
unioning and separating processes employed by MultiSurfRecon truly re-
move all intersections between the component surfaces in three dimensions.
We will show that removing mesh intersections on certain horizontal planes
suffices to preclude any 3D intersections in the complete mesh. To state this
more precisely, we introduce the following definitions and lemmas.

Definition 2 • An original contour is any contour cj
i from Input 3 (de-

scribed in Section 2.1). By Assumption 1, each cj
i is a simple polygon.

• A branching point is a vertex added by MultiSurfRecon whose z-
value is not one of the zi values from Input 1.

• An intermediate plane is a horizontal plane which, after running Mul-
tiSurfRecon, contains at least one branching point.

• The branching set of a mesh component C on an intermediate plane P
is the collection of branching points on P which belong to C, along with
any edges of C between these points.

• An intermediate contour is a contour formed by intersecting M with
an intermediate plane P . Note that an intermediate contour may contain
some of the branching set of the component in which the contour lies.

• Let c1, c2 be contours in the same plane and I(c1), I(c2) their respective
interiors. Then c1 and c2 are said to overlap if and only if (I(c1)∪ c1)∩
c2 6= ∅ and (I(c2) ∪ c2) ∩ c1 6= ∅. Note that if one contour is completely
contained in the other, they do not overlap.
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Lemma 1. Suppose that for each i, there are no pairwise overlaps between
the original contours on plane Zi. Then the output of SingleSurfRecon
run on any subset of the original contours is not self-intersecting.

Lemma 1 is a consequence of the three Criteria laid out in Section 2.1 and
the tiling method; if the original contours do not overlap, SingleSurfRecon
cannot create self-intersections.

Next, observe that for the output of MultiSurfRecon with components
Y C and GC, there are three types of overlap that may occur on an interme-
diate plane P :

• An intermediate contour of Y C intersects an intermediate contour of GC.
• An intermediate contour of Y C intersects the branching set of GC (or vice

versa).
• The branching sets of Y C and GC intersect.

This characterization of types of overlaps extends naturally to outputs with
more than two components. The following lemma shows that detecting and
removing these types of overlaps is equivalent to removing self-intersections
of the entire mesh. The lemma makes use of Assumption 2 from Section 2.1,
without which, problems could arise from contours on consecutive planes being
nested inside each other in contradictory ways. Since this should not happen
with real data, we feel we are justified with the Assumption as stated.

Lemma 2. If there are no overlaps of any of the three types on any interme-
diate plane, then the output of MultiSurfRecon has no self-intersections
in the entire volume. Conversely, if the output has no self-intersections in the
volume, it does not have any overlap on any intermediate plane.

Proof. For the forward direction, consider the stack of all the original and
intermediate planes in the output. By hypothesis, there are no overlaps and
hence no surface intersections on any of these planes. Further, between any
pair of consecutive planes there are no branching problems, as otherwise the
planes would not be consecutive in the stack. Therefore, the surface between
consecutive planes is a linear interpolation of the contours by Criterion 2
from Section 2.2. By Assumption 2 from Section 2.1, the true surface is a 2-
manifold in this region meaning the linear interpolation is not self-intersecting.
Therefore, the entire output is not self-intersecting. For the converse, if the
output is not self-intersecting, the components do not intersect each other and
therefore do not overlap on any intermediate plane. ut

By Lemma 2, the removal of simple transversal and exotic overlaps done
in Step 4 of the algorithm suffices to separate the components of the forest of
branched surfaces in the entire volume. In future work, we plan to examine
whether knowing the type of overlap on an intermediate plane can be used to
simplify the procedure of Step 4.
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4 Implementation and Results

(a) (b)

Fig. 8. (a) A quality-improved mesh of three components - a dendrite shown in
grey and two axons. (b) A zoomed in portion of the meshes.

We show examples of our final, quality improved meshes in Figures 2 and
8. The entire computational pipeline - imaging → contours → tiling → qual-
ity improvement - is handled by the Volume Rover (VolRover) [17] software
developed by our lab, including a library for the Level Set Boundary Interior
and Exterior Mesher (LBIE) [16].

5 Conclusion and Future Work

In this paper, we have presented a solution for creating isotopic meshes re-
solving the forest of branching structures problem and have demonstrated
the feasibility of our approach. This is only the first step, however, in the
simulation-based morphological studies we plan to explore. With topologi-
cally accurate and error-bounded meshes of neuronal forests, we can begin to
quantify properties of these forests in a variety of manners, e.g. computing
the packing density of the cells in the volume and measuring the size and
dimension of various spines along the dendritic structures. These quantita-
tive measurements can be used for comparison among different brain sam-
ples; studies have already found that certain neurological disorders correlate
with atypical dendritic spine formations and densities [21]. Additionally, the
meshes we create can be used to simulate voltage potentials traveling along a
dendrite or axon. The models will be calibrated with real electrophysiological
measurements and then used to study morphological dependence on neuronal
potentials.
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A Medial Axis Definition

There is some disagreement in the literature about the definition of the medial
axis as its intuitive notion is not the most general or accurate formulation.
We will give the most general definition of the medial axis as used in [30, 12].
Let O be an open subset of Rn. The medial axis M is defined to be the set
of points x ∈ O for which there are at least two closest points to x on the
complement Oc. For the 2D images of cells we consider, O will denote the
union of all inter- and intracellular regions. This makes Oc exactly the same
as ∂O, the boundary of O, which is the collection of closed curves meant to
represent the cellular boundaries. Note that authors frequently refer to the
“medial axis of ∂O” to mean M (or sometimes just a subset of M) so our
definition encompasses commonly held notions. The skeleton S is defined to
be the locus of centers of maximal inscribed balls in Rn\∂O where a maximal
ball is an open ball in Rn\∂O which is not contained in any other open ball
in Rn\∂O. In two dimensions, M and S are often nearly identical and so we
will treat them as such; we refer readers to [2] for a careful comparison of the
two concepts.


