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ABSTRACT
Mixed finite element methods solve a PDE involving two or
more variables. In typical problems from electromagnetics
and electrodiffusion, the degrees of freedom associated to
the different variables are stored on both primal and dual
domain meshes and a discrete Hodge star is used to transfer
information between the meshes. We show through analysis
and examples that the choice of discrete Hodge star is essen-
tial to the model and numerical stability of a finite element
method. We also show how to define interpolation functions
and discrete Hodge stars on dual meshes which can be used
to create previously unconsidered mixed methods.

1. INTRODUCTION
The theory of Discrete Exterior Calculus has united many
finite element methods into a common and canonical math-
ematical framework. We highlight three important conclu-
sions of this theory:

1. Mixed finite element methods require degrees of free-
dom to be assigned to both primal and dual meshes of
the same domain.

2. A discrete Hodge star is used to transfer information
between primal and dual meshes.

3. Whitney elements provide stable finite elements for the
primal mesh.

These conclusions raise two questions. First, how should
a discrete Hodge star be defined in order to maintain the
stability of a mixed method? Second, is it possible to provide
stable finite elements for the dual mesh without transferring
information to the primal mesh?

We demonstrate the importance of these issues via a problem
from electromagnetics. Using a Discrete Exterior Calculus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2010 ACM Symposium of Solid and Physical Modeling (SPM ’10), Haifa,
Israel
Copyright 2010 ACM 978-1-60558-984-8/10/09 ...$10.00

analysis of Maxwell’s equations, one can derive a second
order vector wave equation

D1(M1)−1DT1 ~H = ω2(M2)−1 ~H,

where ~H is a magnetic field intensity 1-form on the dual
mesh, ω is a coefficient, D1 is a rectangular incidence matrix
having entries of 0 and ±1 only, and Mk is a square matrix
representing the discretization of the Hodge star operator.
Typically, Mk is defined so that it is a sparse matrix while
its inverse (Mk)−1 is not sparse.

Both questions raised above are of interest in this example.
First, the M1 and M2 matrices must be defined in such a way
that the resulting finite element method is stable, a notion
we will make precise later. Second, since computing the
inverse of the Mk matrices threatens numerical stability and
lengthens computational time, it would be useful to have an
interpolant defined for the degrees of freedom of ~H. We will
show that such an interpolant can also be used to construct
a sparse analogue of (Mk)−1 directly, i.e. without matrix
inversion.

The main contributions of this paper are as follows:

• In Section 3, we use Natural Element Coordinate func-
tions to define an interpolatory basis on polyhedral
dual meshes in R3 and utilize them to define a discrete
Hodge star MDual

k for use on dual meshes. This dual
discrete Hodge star is sparse and thus obviates the typ-
ical practice of inverting large sparse discrete Hodge
star matrices defined on primal simplicial meshes.

• In Section 4, we show that the choice of discrete Hodge
star and its inverse are crucial to the model and nu-
merical stability of mixed finite element methods. Our
analysis and techniques use the generalized framework
of deRham diagrams and Discrete Exterior Calculus,
resulting in simple and universal stability criteria.

• In Section 5, we cast a variety of examples into our
common notational framework and show how to for-
mulate equivalent dual formulations of the problem
from a DEC-based analysis. We analyze the stabil-
ity of each formulation using the techniques developed
in Sections 3 and 4.

We begin with a discussion of prior work and the notation
necessary to fully describe the problems considered.
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2. PRIOR WORK AND NOTATION
Discrete Exterior Calculus (DEC) is an attempt to create
from scratch a discrete theory of differential geometry and
topology whose definitions and theorems mimic their con-
tinuous counterparts [12, 1]. A central conclusion of the
theory is that degrees of freedom for finite elements should
be assigned to mesh vertices, edges, faces or interiors accord-
ing to the dimensionality of the variable being modeled. If
these degrees of freedom have a natural geometric duality,
as occurs for example between electric and magnetic fields,
two meshes of the domain are necessary - a primal and dual
mesh [11]. This has given rise to DEC-based methods for
solving problems of Darcy flow [13], electromagnetism [10]
and elasticity [22], among others.

The primal domain mesh of an n-manifold is a simplicial
complex K. We denote k-simplices by σk where 0 ≤ k ≤ n.
The dual domain mesh ?K is defined by taking the barycen-
ters of n-simplices and connecting them based on simplex
adjacency in the usual manner. We denote dual k-cells by
?σk. Note that ?σk is an (n− k)-dimensional polytope and
is associated to the k-dimensional simplex σk. The mea-
sure of σk (respectively ?σn−k) is denoted |σk| (respectively
|?σn−k|), meaning length for k = 1, area for k = 2, and vol-
ume for k = 3, with the convention that |σ0| = | ? σn| = 1.
Examples for n = 2 are shown in Figure 1.

Figure 1: Primal simplices are shown in black on
the left: σ0 is a vertex, σ1 is an edge, and σ2 is a
face. Their corresponding dual cells for n = 2 are
shown in red on the right: ?σ2 is the barycenter of
σ2, ?σ1 is an edge between barycenters, and ?σ0 is
a planar polygon with barycenters as vertices. In
three dimensions (n = 3), primal vertices have dual
polytopes, primal edges have dual polygonal facets,
primal faces have dual edges, and primal volumes
have dual vertices.

Pertinent definitions from DEC theory are summarized by
Figure 2 and described below. The vector space of k-cochains,
i.e. linear mappings from k-simplices to R, is denoted Ck.
This space is the discrete analogue of Λk, the space of differ-
ential k-forms on the domain. The exterior derivative map
dk : Λk → Λk+1 is used to define the deRham complex:

Λ0
d0 // Λ1

d1 // · · ·
dn−1 // Λn.

In this work, we will focus on problems in R3, in which
the deRham complex becomes the more familiar sequence
of finite element spaces and differential maps:

H1
grad // H(curl)

curl // H(div)
div // L2.

The interpolation map Ik : Ck → Λk converts k-cochains
into k-forms with continuity prescribed by the deRham com-
plex. We will use Whitney forms for these maps which were
first described in [20] and later recognized by Bossavit [5]
and others as the correct generalization of edge and face
elements needed for DEC theory.

Whitney k-forms are piecewise linear functions on a primal
mesh, one for each k-simplex in the mesh. The Whitney
0-form associated to a vertex σ0 := vi is denoted

ησ0 := λi,

where λi is the barycentric function for the vertex. More pre-
cisely, λi is defined by the condition of being linear on every
simplex of the mesh, subject to the constraints λi(vj) = δij .
The Whitney 1-form associated to an oriented edge σ1 :=
[vi, vj ] is the vector-valued function

ησ1 := λi∇λj − λj∇λi.

The Whitney 2-form associated to an oriented face σ2 :=
[vi, vj , vk] is the vector-valued function

ησ2 := 2 (λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj)

The Whitney 3-form associated to an oriented tetrahedron
σ3 is its characteristic function, i.e.

ησ3 := χσ3 =

{
1 on σ3

0 otherwise

The Whitney interpolant Ik of a k-cochain ω, is

Ik(ω) :=
∑
σk∈Ck

ω(σk)ησk . (1)

It is evident from Figure 2 that the Whitney forms only map
primal cochains to piecewise smooth functions, leaving open
the possibility of analogous dual interpolatory functions. By
this, we mean functions with some type of continuity defined
uniquely by degrees of freedom associated to elements in a
dual domain mesh.

The starting point for these types of functions comes from
Wachspress [18] who developed generalized barycentric co-
ordinates for convex polygons. Many extensions have come
out of his work, as surveyed by Sukumar and Malsch in [17].
Christiansen has given an alternative approach based on a
harmonic extension problem formulation [6]. In the context
of DEC, the Sibson interpolant [16] is a natural choice as
it produces non-negative nodal basis functions and reduces
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continuous: H1
grad //

R0

��

zz

∗

$$
H(curl)

curl //

R1

��

}}

∗

!!
H(div)

div //

R2

��

L2

R3

��
primal cochains: C0

D0 //

I0

OO

M0

��

C1
D1 //

I1

OO

M1

��

C2
D2 //

I2

OO

M2

��

C3

I3

OO

M3

��
dual cochains: C3

(M0)−1

OO

C2

(D0)T
oo

(M1)−1

OO

C1

(D1)T
oo

(M2)−1

OO

C0

(D2)T
oo

(M3)−1

OO

Figure 2: The combined DEC and deRham diagram for a contractible domain in R3.

to bilinear functions on rectangles. Accordingly, these func-
tions have been called Natural Element Coordinates and we
use a slight variant of them [15] to ensure a certain local
dependence property, as discussed in Section 3.

Finally, we discuss the Hodge star operator and its dis-
cretization. As shown in Figure 2, the continuous Hodge
star ∗ maps between forms of complementary dimensions.
It is defined as the unique map ∗ : Λk → Λn−k satisfying
the property

α ∧ ∗β = (α, β)Λk µ, ∀α, β ∈ Λk, (2)

where ∧ denotes the wedge product, (·, ·)Λk denotes the in-
ner product on k-forms, and µ is the volume n-form on the
domain.

A discrete Hodge star M maps not only between cochains
of complementary dimensions but also between primal and
dual meshes [11]. A wide variety of discrete Hodge stars
have been proposed in the literature, many of which are
useful in only specific contexts. We summarize some of the
more general definitions here and cast them into a common
notational framework to aid in their comparison.

Desbrun et al. [7] define a diagonal discrete Hodge star by

(MDiag
k )ij :=

| ? σki |
|σki |

δij . (3)

The definition of MDiag
k fits nicely into DEC theory when the

dual mesh is defined by taking circumcenters of the primal
simplices. In practice, however, it is often desirable to use
barycenters to define the dual mesh as this guarantees that
σk will intersect ?σk in the ambient space.

A correction factor for using barycenters instead of circum-
centers is given by Auchmann and Kurz [2]. They derive a
discrete Hodge star using Whitney interpolants to produce

(MGeom
k )ij := αijβij

k(n− k) + 1

Nk

| ? σki |
|σkj |

,

where αij is a material parameter, possibly tensorial, βij
is a measure of local deviation of the barycenter from the
circumcenter, and Nk is the number of k-simplices in an n-
simplex. Note that if the barycenter and circumcenter are

the same, then βii = 1 and we have (MGeom
1 )ii = (MDiag

1 )ii
up to a constant multiple. We show an example of the com-
putation of βij in Figure 3.

Figure 3: The deviation of the barycenter from the
circumcenter for n = 3, k = 1 is βij = cos γij/ cos δj

where γij is the angle between the normals to the
dual faces ?σ1

i and ?σ1
j (the vectors n̂i and n̂j on the

left) and δj is the angle between the normal n̂ of
dual face ?σ1

j and the edge σ1
j (as shown on the right).

Note that γii=0. If the barycenter and circumcenter
are identical, the dual face will be orthogonal and δj

will be zero.

Wardetzsky and Wilson [19, 21] take a different approach,
defining a combinatorial discrete Hodge star based on a dis-
crete wedge product. Given a k-cochain ωk and a j-cochain
υj , they define their discrete wedge product to be

ωk ∧ υj := Rk+j(Ikωk ∧ Ijυj).

The combinatorial Hodge star is then defined implicitly by
the relationship(
MComb
k ωk, υn−k

)
Cn−k

=
∑
τ∈Cn

(Rn(Ikωk ∧ In−kυn−k))(τ),

for all υn−k ∈ Cn−k. DiCarlo et al. [8] have recently
described a discrete Hodge star by a similar method us-
ing metrized chains instead of cochains. Both approaches
map primal k-cochains (or metrized chains) to primal (n−
k)-cochains (or metrized chains) instead of dual (n − k)-
cochains. This limits the applicability of the definition to
certain types of problems and meshes, preventing it from
being used in a generalized finite element method.

The approach closest to the finite difference roots of DEC
theory was originally proposed by Dodziuk [9] and imple-
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mented by Bell [3]. It uses Whitney interpolants explicitly
to define matrix entries as

(MWhit
k )ij :=

(
ησk

i
, ησk

j

)
=

∫
K

ησk
i
· ησk

j
(4)

The inner product here is the standard integration of scalar
or vector valued functions over the domain K. We note that
no authors to our knowledge have defined a discrete Hodge
star using dual interpolatory functions as we propose in this
work.

3. DUAL WHITNEY INTERPOLANTS AND
DUAL DISCRETE HODGE STARS

It is evident from the DEC-deRham diagram in Figure 2 that
the direct interpolation of degrees of freedom on a dual mesh
is not available in the common theory. Further, we have seen
from the discussion in Section 2 that the definition of (Mk)−1

has only been implied from definitions of Mk. In this section,
we define a set of interpolation functions I analogous to the
Whitney interpolants defined in (1) and use them to provide
an explicit definition of a dual discrete Hodge star.

Since Whitney forms on the primal mesh are defined using
barycentric coordinate functions for simplices, it is natural
to construct an interpolation function on the dual mesh us-
ing a generalized barycentric coordinate system. On a dual
mesh, this entails a set of functions {λi}, one for each vertex
{vi} of the dual mesh, satisfying the following properties:

L1. Positivity: 0 ≤ λi ≤ 1

L2. Interpolation: λi(vj) = δij

L3. Partition of unity:
∑
i λi = 1

L4. Linear completeness:
∑
i viλi(x) = x

These properties can be achieved using a modification of the
Natural Element Coordinate (NEC) functions which we now
define. Given a polytope with vertices {vi} in Rn, the first
order Voronoi region of vertex i is those points in the domain
which are closer to vi than any other vertex vj :

V R(vi) := {x ∈ Rn : d(x, vi) ≤ d(x, vj),∀j 6= i}.

Given a point p inside the polytope, the Vornonoi region
formed by adding p to the vertex list is denoted

V R(p) := {x ∈ Rn : d(x, p) ≤ d(x, vi),∀i}.

Using | · | to denote the usual Lebesgue measure of a region
(length for one-dimensional regions, area for two-dimensional
regions, etc), the Natural Element Coordinate (NEC) of a
point p with respect to vertex vi is defined to be

λi(p) :=
|V R(p) ∩ V R(vi)|

|V R(p)|

We show an example in Figure 4. The NEC functions are
defined to be zero outside the polytope and have been shown
to satisfy properties L1-L4 for convex polytopes. Further,
they are C∞ within each cell except at vertices where they
are C0 and at Voronoi spheres where they are C1 [23]. The
NEC functions generalize barycentric functions as it can be
shown that λi ≡ λi on a simplex.

Figure 4: Geometric calculation of a NEC coordi-
nate. (a) V R(vi) is the Voronoi region associated to
vertex vi in the polygon. (b) V R(p) is the Voronoi
region associated to p if it is added to the vertex list.
(c) The quantity |V R(p)∩V R(vi)| is exactly |V R(p)| if
p = vi and decays to zero as p moves away from vi,
with values identically zero at all vertices besides vi.
This analogue to barycentric coordinates makes the
NEC functions suitable for use in dual interpolants.

Milbradt and Pick [15] modify the definition of NEC func-
tions for concave polytopes so that an additional condition
holds:

L5. Boundary agreement: If x lies on an edge (facet) and
vi is not a vertex of the edge (facet) then λi(x) = 0.

In other words, the coordinates of a point on an edge or facet
of the polytope are dependent only on the NEC functions
associated to the boundary vertices of that edge or facet.
This ensures C0 conformity between adjacent mesh elements
and allows us to define Whitney-like interpolants {η?σk

i
} on a

dual mesh. The 0-form associated to a dual vertex ?σ3 := vi
is

η?σ3 := λi,

the NEC function for the vertex. The 1-form associated to
an oriented dual edge ?σ2 := [vi, vj ] is the vector-valued
function

η?σ2 := λi∇λj − λj∇λi
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Assigning a vector-valued function to an oriented dual face
is more subtle as the face is in general not a triangle. The
dual face ?σ1 will have m vertices where m is the number of
tetrahedra σ3 sharing the edge σ1. To associate a single 2-
form to the face, we take the vertices in groups of consecutive
triples and average them:

η?σ1 :=
1

m

m−1∑
i=0

(λi∇λi+1 ×∇λi+2) + (λi+1∇λi+2 ×∇λi)

+(λi+2∇λi ×∇λi+1),

where indices are taken mod m. The 3-form η?σ0 associated
to a dual cell ?σ0 is its characteristic function:

η?σ0 := χ?σ0 =

{
1 on ?σ0

0 otherwise

To compare our dual forms to primal Whitney forms, we
state the three characteristic criteria of primal Whitney forms.

W1. Partition of Unity. Let 1 be the constant function
with value 1 everywhere on the domain. Then∑

σ0∈K

ησ0 = 1 and
∑
σ3∈K

ησ3 = 1.

Let I denote the 3× 3 identity matrix. Let ~σ1 denote
the vector in R3 with direction and length the same
as σ1. Let ~σ2 denote the vector in R3 with direction
normal to σ2 (based on the orientation of K) and mag-
nitude equal to the area of σ2. Then∑

σ1∈K

~σ1.ησ1 = I and
∑
σ2∈K

~σ2.ησ2 = I.

The “.” operation denotes matrix multiplication be-
tween the 3× 1 matrix ~σi and the 1× 3 matrix ησi .

W2. Localization. The support of ησk is contained within
the tetrahedra adjacent to σk.

W3. Exactness. For k = 1, 2, 3,

im IkDk−1 ⊆ ker dk.

If the domain is contractible, the containment is an
equality.

We now state a series of results showing that the dual Whit-
ney forms satisfy the same properties.

Lemma 1. Partition of Unity. Property W1 holds if
σk is replaced by ?σ3−k.

Proof. Dual vertices are associated to the NEC func-
tions which satisfy L3, a partition of unity property. Dual
edges are associated to direct analogues of Whitney 1-forms
using NEC functions instead of barycentric functions. The
proof that the Whitney 1-forms satisfy a partition of unity
property only uses the properties L1-L5 for barycentric func-
tions. Thus it carries through to NEC coordinates. A simi-
lar argument holds for dual faces. Dual cells are associated
to characteristic functions and thus satisfy the partition of
unity property trivially.

Lemma 2. Localization. The support of η?σk is con-
tained within the dual cells adjacent to σk.

Proof. This follows directly from the fact that the NEC
coordinates, like the barycentric coordinates, satisfy the lo-
calization property.

Lemma 3. Exactness. For k = 0, 1, 2,

im I3−k(Dk)T ⊆ ker dk.

If the domain is contractible, the containment is an equality.

Proof. The proof that Whitney forms satisfy the exact-
ness property only uses the properties L1-L5 for barycen-
tric functions and the fact that Dk is the transpose of the
incidence matrix for k-simplices. Thus, the proof carries
through to the dual formulation of the property.

We define the dual Whitney interpolant of a dual (n − k)-

cochain ω ∈ Cn−k to be

In−k(ω) :=
∑

?σk∈Cn−k

ω(?σk)η?σk . (5)

We use the dual interpolants to define a dual discrete Hodge
star by

((MDual
k )−1)ij :=

(
η?σk

i
, η?σk

j

)
. (6)

The inner product here is the standard integration of scalar
or vector valued functions over the dual domain ?K. For
instance, in the case k = 3, we have

((MDual
3 )−1)ij :=

(
η?σ3

i
, η?σ3

j

)
=

∫
?K

λiλj .

The formulation for other k values will similarly involve in-
tegrals of the λi functions.

Lemma 4. (MDual
k )−1 is sparse.

Proof. By Lemma 2, η?σk has localized support. Entry
ij of (MDual

k )−1 will be non-zero only if ?σki and ?σkj are
adjacent. Thus each row of the matrix will have at most
as many non-zero entries as ?σki has adjacent n − k cells,
meaning the matrix is sparse.

Lemma 4 does not hold if MDual
k is replaced by MGeom

k ,
MComb
k , or MWhit

k as these sparse matrices typically have
dense inverses. We note that (MDiag

k )−1 is trivially sparse
since it is diagonal. However, as we will show in Section
4, MDiag

k is lacking in both model and numerical stability.

Hence, MDual
k is a novel and robust option for computing an

inverse discrete Hodge star.

4. STABILITY CRITERIA FROM DISCRETE
HODGE STARS

Three types of stability criteria must be considered when de-
signing a finite element method. First, the discrete solution
computed by the method should belong to a subspace of the
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solution space to the continuous problem; we call this model
stability or discretization conformity. Second, the true er-
ror between the discrete and continuous solutions should be
bounded by a multiple of the best approximation error; this
is the classical finite element notion of discretization stabil-
ity. Third, accumulated numerical errors due to machine
precision should not compromise the computed solution; we
call this numerical stability or bounded roundoff error. In
this paper, we focus on model and numerical stability and
how they are affected by the type of discrete Hodge star
operator Mk used in the method.

Previous stability criteria for Mk focus on properties of the
matrix itself. In particular, it is common to seek a defini-
tion of Mk so that it is a sparse, symmetric, and positive
definite matrix. Requiring Mk to be symmetric and positive
definite is equivalent to saying Mk has only positive eigen-
values. This avoids computing imaginary solutions with no
physical meaning and is necessary for Mk to agree with the
inner product structure on the space. Our contention is that
these criteria alone are not sufficient for evaluating the sta-
bility of a method as we explain below.

4.1 Model Stability
To maintain the model stability of a finite element method,
a discrete Hodge star Mk should aim to make the following
diagram commutative:

continuous Λk

Rk

��

oo ∗ // Λn−k

Rn−k

��

continuous

primal Ck

Ik

OO

Mk //
Cn−k

(Mk)−1

oo

In−k

OO

dual

No discrete Hodge star can satisfy this condition in its en-
tirety as R (the deRham map) and I are not true inverses.
Thus, we break the diagram down into different subcommu-
tativity conditions:

• Commutativity at Ck: ∗Ik = In−kMk

• Commutativity at Cn−k: ∗In−k = Ik(Mk)−1

• Commutativity at Λk: MkRk = Rn−k∗

• Commutativity at Λn−k: (Mk)−1Rn−k = Rk∗

We focus on commutativity at Ck as an illustrative example.
At the very least, one would hope to satisfy the condition in
an integral sense, leading us to define weak commutativ-
ity at Ck by the condition∫

K

α ∧ ∗Ik =

∫
K

α ∧ In−kMk, ∀α ∈ Λk. (7)

The definition of the Hodge star in (2) allows us to re-write
the left side, yielding∫

K

(α, Ik)Λkµ =

∫
K

α ∧ In−kMk, ∀α ∈ Λk. (8)

We can use this criteria to prove model stability results such
as the following.

Lemma 5. For n = 3, MWhit
0 exhibits more model stabil-

ity than MDiag
0

Proof. We evaluate the weak commutativity at C0 con-
dition on the basis cochain ω0

i , defined to have value 1 on
vertex σ0

i and value 0 on all other vertices. Using the defi-
nition of I0 from (1), we write(

α, I0

(
ω0
i

))
Λ0 = (α, ησ0

i
)H1 = (α, λi)H1

We evaluate the right side of (8) using the definition of
I3 from (5) and two different discrete Hodge stars. Using

MDiag
0 from (3), we get

I3MDiag
0 (ω0

i ) =
∑

?σ0
j∈C

3

(MDiag
0 ω0

i )χ?σ0
j
µ

= | ? σ0
i |χ?σ0

i
µ

Hence the weak commutativity condition (8) in this case is

|K|(α, λi)H1 =
∣∣?σ0

i

∣∣ ∫
?σ0

i

αµ, ∀α ∈ H1. (9)

If MWhit
0 from (4) is used instead, we have

I3MWhit
0 (ω0

i ) =
∑

?σ0
j∈C

3

(MWhit
0 ω0

i )χ?σ0
j
µ

=
∑
j

(λi, λj)χ?σ0
j
.

In this case, the weak commutativity condition is

|K|(α, λi)H1 =
∑
j

(λi, λj)

∫
?σ0

j

αµ, ∀α ∈ H1. (10)

Between (9) and (10), the former is a coarser approximation
of the inner product (α, λi)H1 and therefore is more likely
to introduce error than the latter.

Initial examinations of alternate scenarios of the commuta-
tivity conditions produce similar conclusions about the su-
periority of the Whitney-based discrete Hodge star. We plan
to expand on this analysis in future work.

4.2 Local Structure of Discrete Hodge Stars
The continuous Hodge star ∗ is a local operator meaning its
effect on a differential form evaluated at a particular point on
a manifold depends only on the geometry of a local neighbor-
hood of the point. The discrete Hodge star is thus required
to be a local operator as well meaning the evaluation of Mk

on a basis cochain ωki (1 on σki and 0 otherwise) should in-
volve values on only a few simplices adjacent to σki . In the
language of matrix theory, this requirement says Mk should
be sparse.

All the discrete Hodge stars considered in this paper - MDiag
k ,

MGeom
k , MWhit

k and our dual discrete Hodge (MDual
k )−1 - are

sparse matrices by the nature of their respective definitions.
In the case of MWhit

k , we prove a more specific characteriza-
tion of the matrix’s structure.

Lemma 6. Entry ij in MWhit
k is non-zero only if there

exists σn ∈ K such that σn has at least one vertex from σki
and one vertex from σkj .
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Proof. Computing entry ij in MWhit
k involves [4] sum-

ming terms of the form(∫
K

λ1λ2

)
det
(
V TI WJ

)
(11)

where λ1, λ2 are barycentric functions associated to v1 ∈ σki ,
v2 ∈ σkj , respectively; I is a list of k vertices from σki not

including v1; J is a list of k vertices from σkj not including v2;
and VI , WJ are n× k matrices. The pth column of VI is the
vector ∇λp where λp is the barycentric function associated
to the pth entry in I. The qth column of WJ is the vector
∇λq where λq is the barycentric function associated to the
qth entry in J .

Observe that the support of the barycentric function associ-
ated to vertex v is contained within the n-simplices touching
v. Thus, if there is no σn with at least one vertex from σki
and one vertex from σkj , the λ1 and λ2 appearing in (11) will
always have disjoint support, making the entry zero.

Using the same kind of reasoning, we have a similar result
for our dual discrete Hodge star.

Lemma 7. Entry ij in (MDual
k )−1 is non-zero only if there

exists ?σ0 ∈ ?K such that ?σ0 has at least one vertex from
?σki and one vertex from ?σkj .

Corollary 1. Let Nk denote the number of k-simplices
in an n-simplex and let A(σk) denote the number of n-
simplices in K incident on at least one vertex from σk. Then
the number of non-zero entries in row i of MWhit

k or row i
of (MDual

k )−1 is at most NkA(σki ).

The bound can be sharpened for particular choices of n and
k or if additional assumptions are made about K. As stated,
however, the corollary provides a simple means for evaluat-
ing the computational expense of a particular discretization
scheme as we will discuss in Section 5.

4.3 Numerical Stability
Many finite element methods require inverting Mk for some
k in order to compute the solution. Hence, to maintain the
numerical stability of a finite element method, the discrete
Hodge star matrix should have a bounded condition num-
ber. Put differently, the entries of the matrix should be
roughly the same order of magnitude. This requirement is
frequently considered from the context of numerical analysis
but is often absent from the literature on discrete operators.

The common thread in the geometrically-defined discrete
Hodge stars MDiag

k and MGeom
k is a measurement of the size

of dual cells i.e. |?σk|. This suggests that geometric criteria
on primal elements alone will not be sufficient to control
the condition number of the discrete Hodge star matrix. In
particular, since ratios of primal to dual cells are computed,
we must satisfy the following criteria:

N1. Primal simplices σk satisfy geometric quality measures.

N2. Dual cells ?σk satisfy geometric quality measures.

N3. The value of | ? σk|/|σk| is bounded above and below.

N4. The primal and dual meshes do not have large grada-
tion of elements, i.e. mini |σki | and maxi |σki | are the
same order of magnitude and mini |?σki | and maxi |σki |
are the same order of magnitude.

Conditions N1 and N2 are required for discretization stabil-
ity. Aspect ratio is often used as a geometric quality mea-
sure for tetrahedra. Conditions N3 and N4 are based on our
analysis above. Condition N4 particular shows that these
discrete Hodge stars are not fit for use on meshes tailored
to multi-resolution situations where gradation is necessary
to achieve reasonable computation times. We show some
examples in Figures 5 and 6.

Figure 5: Examples illustrating how the measure of
a primal simplex σk (black) and its dual ?σk (red)
need not be the same order of magnitude. (a) In
this 2D example, the ratio | ? σ1|/|σ1| can be made
arbitrarily small by increasing the length of σ1. (b)
The ratio |?σ1|/|σ1| can be made arbitrarily large by
decreasing the length of σ1. (c) The ratio | ? σ2|/|σ2|
can be made arbitrarily large by decreasing the area
of σ2. Thus, a discrete Hodge star involving terms of
the form |?σk|/|σk|may have a bad condition number
unless primal and dual mesh quality is controlled.

For MWhit
k , the size of the matrix entries are controlled by

the size of the inner products of Whitney basis forms. The
integrals in (11) are on the order of the size of |σk|, meaning
again that a large gradation in primal mesh element size
could produce large condition numbers and hence numerical
instability. Since it does not involve the size of dual mesh
elements, however, MWhit

k is more numerically stable against
violations of conditions N2 and N3. Analogously, (MDual

k )−1

is more numerically stable against violations of conditions
N1 and N3. We summarize our conclusions below.

• MDiag
k and MGeom

k may produce numerical instability
if any of conditions N1-N4 are not satisfied.

• MWhit
k may produce numerical instability if conditions

N1 or N4 are not satisfied.
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Figure 6: Graded meshes also present a problem
for discrete Hodge stars involving primal-dual size
ratios. The primal mesh shown here induces a wide
variation in values of | ? σk|/|σk| for k = 0, 1, 2. This
can cause ill-conditioned Mk matrices, resulting in
numerical instability.

• (MDual
k )−1 may produce numerical instability if con-

ditions N2 or N4 are not satisfied

5. APPLICATIONS
The dual interpolation functions In−k we defined in (5) and
the dual discrete Hodge star we defined in (6) are new tools
for designing stable finite element methods. We now exam-
ine a variety of finite element problems from the literature
and show how these tools coupled with the stability criteria
we formulated in Section 4 can be used to derive alternative
stable finite element discretizations.

5.1 Poisson Problem
The smooth Poisson problem on a domain Ω ⊂ R3 is{

∆u = f in Ω
∂u

∂n
= 0 on ∂Ω

The system is discretized by Bell [3] as

DT0 MWhit
1 D0u = f

where u ∈ C0, i.e. a vector of values at vertices of a primal
mesh. This approach uses the following subset of the DEC-
deRham diagram (Figure 2):

primal: u
D0 // D0u

M1

��
dual: (D0)TM1D0u M1D0u

(D0)T
oo

The essential property of u is that it is a 0-form, not that it
must be discretized as a primal 0-cochain. If we discretize
it instead as a dual 0-cochain, we get a different portion of
the DEC-deRham diagram:

primal: (M2)−1(D2)Tu
D2 // D2(M2)−1(D2)Tu

dual: (D2)Tu

(M2)−1

OO

u
(D2)T

oo

Under this formulation, we can solve for u using the linear
system

D2(MDual
2 )−1(D2)Tu = f.

By Lemma 4, (MDual
2 )−1 is sparse meaning this system is

no more computationally expensive than the primal formu-
lation using the sparse matrix MWhit

1 . However, the dual-
based system often requires many fewer computations than
the primal-based system. To see this, define

A := DT0 MWhit
1 D0 and B := D2(MDual

2 )−1(D2)T .

Observe first that A is a q0 × q0 matrix while B is a q2 ×
q2 matrix where qk denotes the number of k-simplices in
the primal mesh. Thus, if a mesh has many more vertices
than tetrahedra, B is a much smaller but equally powerful
discretization of the problem.

Further, let aij , dij , mij denote the entries in the ith row and
jth column of A, Dk and MWhit

1 , respectively. Multiplying
out the matrices in A, we find that

aij =

n∑
r,s=1

dsidrjmsr.

In words, the value of aij depends on, possibly, all of the
entries of MWhit

1 but only on the i and jth columns of D0.
Since MWhit

1 is sparse, the number of summands used to
compute aij is on the order of the number of tetrahedra
which have both σ0

i and σ0
j as vertices. For a mesh with

many tetrahedra grouped around certain edges, this may be
very large.

By a similar analysis, we can show that the number of sum-
mands used to compute entry ij of B is on the order of the
number of tetrahedra which have both σ2

i and σ2
j as faces,

i.e. exactly two. Hence, we conclude that for meshes with
many vertices of high incidence, the dual formulation re-
quires fewer computations than the primal formulation and
hence is less likely to accrue numerical errors.

We conclude that (MDual
2 )−1 provides a new dual formula-

tion for Poisson’s equation. We analyze this dual formula-
tion for its numerical stability properties in comparison to
the primal in the full version of this paper.

5.2 Maxwell’s Equations
The curl equations derived from Maxwell’s equations are

∇ 1

µ
×∇× ~E = ω2ε ~E

∇1

ε
×∇× ~h = ω2 ~H

where ~E and ~H are electric and magnetic field intensity,
respectively, and µ and ε are constants. He and Teixeira
[10] discretize these equations as

DT1 MWhit
2 D1

~E = ω2MWhit
1

~E

D1(MWhit
1 )−1DT1 ~H = ω2(MWhit

2 )−1 ~H,

which they correctly identify as corresponding to primal and
dual formulations of the problem. The subset of the DEC-
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deRham diagram (Figure 2) used in these formulations is

primal: ~E
D1 //

M1

��

C2

M2

��
dual: C2

(M1)−1

OO

~H
(D1)T

oo

(M2)−1

OO

Here, the dual formulation of the problem is undesirable due
to the necessity of computing the inverses of large sparse
matrices. In particular MWhit

k is a qk × qk sparse matrix
where qk is the number of k-simplices in the primal mesh.
Hence, (MWhit

k )−1 may be a full rank qk×qk matrix requiring
O(q2

k) computations, which is certainly undesirable for large
scale applications. Using our dual discrete Hodge star, we
recognize

D1(MDual
1 )−1DT1 ~H = ω2(MDual

2 )−1 ~H

as an equivalent formulation of the dual problem. By Lemma
4, (MDual

k )−1 is sparse meaning the requisite number of com-
putations is closer to O(qk). Thus, (MDual

k )−1 may provide
a more numerically stable dual formulation of the problem.

5.3 Darcy Flow
The Darcy flow problem in R3 is formulated by Hirani et al.
in [13] as 

~f + k
µ
∇p = 0 in Ω,

div~f = φ in Ω,
~f · n̂ = ψ on ∂Ω,

where k and µ are constants. It is assumed that there is
no external body force, the boundary Γ := ∂Ω is piecewise
smooth, and the compatibility condition

∫
Ω
φdΩ =

∫
∂Ω
ψdΓ

is satisfied. The system is discretized as[
−(µ/k)MDiag

2 DT2
D2 0

] [
~f
p

]
=

[
0
φ

]
. (12)

where ~f ∈ C2 represents the volumetric flux through faces

of the primal mesh and p ∈ C0
represents the pressure at

vertices of the dual mesh. We call this the primal flux
formulation. The authors weight the entries of MDiag

2 with
permeability coefficients in case permeability differs between
adjacent tetrahedra. The authors interpolate the flux data

by I2
~f and the pressure data by I0(MDiag

3 )−1p. Thus, the
subset of the DEC-deRham diagram (Figure 2) required for
the primal flux formulation is

primal: ~f
D2 //

MDiag
2

��

D2
~f

dual:
MDiag

2
~f

(D2)T p
p

(D2)T
oo

While flux ought to be valued over 2D faces, it need not be
valued on primal mesh elements. Hence, we derive a dual

flux formulation by treating flux ~f as an element of C2
and

pressure p as an element of C0. We use the sparse dual Hodge
star (MDual

1 )−1 to transfer information from dual faces to
primal edges. The flux data is interpolated by our dual

interpolant I2
~f and the pressure data by I0p. The subset

of the DEC-deRham diagram required for this new dual flux
formulation is

primal: p
D0 // D0p

(MDual
1 )−1 ~f

dual: (D0)T ~f ~f
(D0)T

oo

(MDual
1 )−1

OO

As discussed in Section 4, MDiag
k does not provide for a sta-

ble discrete Hodge star since it lacks the subcommutativity
conditions and may have a bad condition number. Thus, a
more stable approach would be provided by the dual flux
formulation as stated above or by using a different discrete
Hodge star in the primal flux formulation, such as MWhit

2 .

5.4 Electrodiffusion
We now consider a more elaborate example for which mixed
finite element methods will be both necessary and compli-
cated. The electrodiffusion equations govern the spatial dis-
tribution of electric potential and multiple ion species (in-
dexed by k) in and near neuronal cells. They are formulated
by Lopreore et. al [14] as

~Jk = −
(
∇ck +

Fzk
RT

ck ~E

)
,

0 = div
(
ε ~E
)

+
∑
k

ckzkF,

~E = ∇φ,
0 =

∂

∂t
ck +Dkdiv ~Jk,

The variables in the problem are the electric potential φ, the
electric field ~E, the flux of the kth ion species ~Jk, and the
concentration of the kth ion species ck. The physical and
biological parameters F , zk, R, T , ε, and Dk are assumed
to be known constants for the purpose of our discussion.

A variety of schemes can be designed to solve the PDE,
depending on what load data and boundary conditions are
assumed. For instance, by taking the divergence of the first
equation and some substitution, we can reduce to the set of
just two equations

0 = div (ε∇φ) +
∑
k

ckzkF,

∂

∂t
ck = Dk∆ck +

Fzk
RT

div(ck∇φ).

(13)

The top equation has been analyzed in Section 5.1. The bot-
tom equation is time dependent and thus can be discretized
using a semi-implicit Euler scheme. We can then iteratively
produce solutions for ck and ∇φ. If ck is treated as a pri-
mal 0-cochain, then we must treat ck∇φ as a dual 2-cochain
so that we can take its divergence. This uses the following
portion of the DEC-deRham diagram:

primal: ck
D0 // D0ck

M1

��

dual:
(D0)TM1D0ck
(D0)T ck∇φ

M1D0ck
ck∇φ(D0)T

oo
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Alternatively, if ck is treated as a dual 0-cochain, we must
treat ck∇φ as a primal 2-cochain and use a different portion
of the diagram:

primal:
(M2)−1(D2)T ck

ck∇φ
D2 // D2(M2)−1(D2)T ck

D2ck∇φ

dual: (D2)T ck

(M2)−1

OO

ck
(D2)T

oo

An unusual aspect of (13) is that the concentration ck is
implicitly discretized differently by the two equations. In
the time-dependent equation, concentration is something to
which the gradient can be applied, i.e. a 0-cochain. In top
equation, concentration is something which can be added to
the divergence of ~E, i.e. a 3-cochain. Thus we conclude that
the discrete Hodge star operator M0 and its inverse must be
used to transfer between the 0-cochain and 3-cochain rep-
resentations of ck during the iterative scheme. By Lemmas
4 and 5, we know that MWhit

0 and (MDual
0 )−1 are stable

choices for this transfer. Further details of the stability anal-
ysis of electrodiffusion will be provided in the full version of
this paper due to space constraints.

6. CONCLUSION
In this work we have augmented the theories of Discrete
Exterior Calculus and finite element analysis by introduc-
ing two novel tools: Whitney-like interpolation functions
defined on dual domain meshes and a sparse inverse dis-
crete Hodge star. We have shown the tools to have natural,
straightforward definitions and clear geometric interpreta-
tions. We have used the them to derive previously unex-
amined model and numerical stability criteria relating to
the definition of the discrete Hodge star. Further, we have
demonstrated through a variety of examples how these can
and in some cases must be used to produce stable mixed fi-
nite element methods. The techniques we have described
provide a valuable methodology for researchers to revisit
their current finite element formulations, thereby allowing
them to derive new stable discretizations of and solutions to
PDEs.
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