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This thesis studies the approximation of solutions to partial differential equa-

tions (PDEs) over domains discretized by the dual of a simplicial mesh. While

‘primal’ methods associate degrees of freedom (DoFs) of the solution with spe-

cific geometrical entities of a simplicial mesh (simplex vertices, edges, faces,

etc.), a ‘dual discretization method’ associates DoFs with the geometric duals

of these objects. In a tetrahedral mesh, for instance, a primal method might

assign DoFs to edges of tetrahedra while a dual method for the same problem

would assign DoFs to edges connecting circumcenters of adjacent tetrahedra.

Dual discretization methods have been proposed for various specific

PDE problems, especially in the context of electromagnetics, but have not

been analyzed using the full toolkit of modern numerical analysis as is consid-

ered here. The recent and still-developing theories of finite element exterior

calculus (FEEC) and discrete exterior calculus (DEC) are shown to be essen-

tial in understanding the feasibility of dual methods. These theories treat the
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solutions of continuous PDEs as differential forms which are then discretized

as cochains (vectors of DoFs) over a mesh. While the language of DEC is ideal

for describing dual methods in a straightforward fashion, the results of FEEC

are required for proving convergence results.

Our results about dual methods are focused on two types of stability

associated with PDE solvers: discretization and numerical. Discretization sta-

bility analyzes the convergence of the approximate solution from the discrete

method to the continuous solution of the PDE as the maximum size of a mesh

element goes to zero. Numerical stability analyzes the potential roundoff errors

accrued when computing an approximate solution. We show that dual meth-

ods can attain the same approximation power with regard to discretization

stability as primal methods and may, in some circumstances, offer improved

numerical stability properties.

A lengthier exposition of the approach and a detailed description of our

results is given in the first chapter of the thesis.
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Chapter 1

Introduction

1.1 Problem Statement

The challenge in designing stable numerical methods comes from an

interplay between the necessities of the discrete computational problem for-

mulation and the inherent constraints of the corresponding continuous math-

ematical formulation. Proof of the existence and uniqueness of the solution

to a partial differential equation (PDE) in a continuous setting, for instance,

does not guarantee that a particular numerical method will converge to that

solution. Likewise, stable numerical methods designed based on ease of im-

plementation, backwards compatibility, or similar concerns from the discrete

setting may become so popular with their users that alternative methods with

equal theoretical justification and possibly greater computational value remain

unconsidered.

The goal of this thesis is to exhibit how a wide class of PDE problems

are amenable to solution by “dual mesh” discretization methods frequently

dismissed or glossed over in the literature. The mathematical underpinnings

of the continuous setting make such constructions simple to motivate from a

theoretical perspective. At the same time, a variety of techniques from the dis-
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crete setting, including finite element methodologies, discrete exterior calculus,

and generalized barycentric interpolation, make dual methods feasible for im-

plementation. We will show that the resulting methods are novel in definition,

canonical in theoretical backing, and beneficial to practicing computational

scientists.

To motivate the approach, we introduce a number of diagrams showing

the various operators relating continuous and discrete function spaces, both

primal and dual. Continuous PDE problems have solutions naturally over

a space of continuous functions Λk, where the index k corresponds to the

dimensionality, in a certain sense, of the solution function. The elements of

these spaces can be treated as differential k-forms and the standard operators

on them (grad, curl, div) can be treated as instances of the exterior derivative

operator d. The rich theory of exterior calculus also gives a natural mapping

called the Hodge star ∗ taking Λk isometrically onto Λn−k where n is the

dimension of the underlying manifold domain. Using an overline to denote a

dual treatment, these maps relate the spaces in the following fashion for n = 3.

primal forms: Λ0
d0 //

OO

∗
��

Λ1
d1 //

OO

∗
��

Λ2
d2 //

OO

∗
��

Λ3
OO

∗
��

dual forms: Λ
3

Λ
2

d2
oo

Λ
1

d1
oo

Λ
0

d0
oo

In the discrete setting, approximate solutions to a PDE are written as a linear

combination of a finite number of basis functions. The coefficients of the basis

functions are sufficient to describe the discrete solution and hence our discrete

solution spaces consist of vectors of real coefficients. These vector spaces are

2



called cochain spaces and, like the continuous differential form spaces, can be

associated with a dimensionality k. The emergent theory of discrete exterior

calculus has shown how to recreate the essential properties of the continuous

setting canonically in a discrete setting. This gives us primal and dual cochain

spaces (Ck and Ck
), primal and dual exterior derivative maps (Dk and D

T
n−k)

and primal and dual discrete Hodge stars (Mk and M
−1
n−k) in direct analogy to

their continuous counterparts.

primal cochains: C0
D0 //

M0

��

C1
D1 //

M1

��

C2
D2 //

M2

��

C3

M3

��

dual cochains: C3

(M0)−1

OO

C2

(D0)T
oo

(M1)−1

OO

C1

(D1)T
oo

(M2)−1

OO

C0

(D2)T
oo

(M3)−1

OO

The essential question then becomes how to define maps between the Λk and Ck

spaces which allow for a priori estimates on the error incurred by discrete ap-

proximation of continuous functions. Maps from continuous to discrete spaces

are called projection maps, denoted by P , and maps in the opposite direction

are called interpolation maps, denoted by I. Since primal cochain spaces are

associated with simplicial domain meshes (i.e. triangulations for n = 2 and

tetrahedralizations for n = 3) and interpolation over simplices is well under-

stood, the natural maps to consider are as follows.

primal forms: Λ0
d0 //

P0

��

Λ1
d1 //

P1

��

Λ2
d2 //

P2

��

Λ3

P3

��
primal cochains: C0

D0 //

I0

OO

C1
D1 //

I1

OO

C2
D2 //

I2

OO

C3

I3

OO

An enormous amount of effort has gone into proving asymptotic optimal error

estimates in this context of primal forms and primal cochains, though not

3



always in the language of continuous or discrete exterior calculus. With this

language, however, we can immediately consider the possibility of analogous

projection and interpolation maps over the dual spaces.

dual forms: Λ
3

P3

��

Λ
2

d2
oo

P2

��

Λ
1

d1
oo

P1

��

Λ
0

d0
oo

P0

��

dual cochains: C3

I3

OO

C2

(D0)T
oo

I2

OO

C1

(D1)T
oo

I1

OO

C0

(D2)T
oo

I0

OO

Putting these four diagrams together, we see the complete set of maps relat-

ing the continuous and discrete settings. Map labels are omitted for readabil-

ity, however, arrows indicate a continuous or discrete uni-directional exterior

derivative operator.

primal forms Λ0 //
?

?

Λ1 //
?

?

Λ2 //
?

?

Λ3

?

?

Λ
3

Λ
2oo

Λ
1oo

Λ
0oo dual forms

primal cochains C0 //
?

?

?

C1 //
?

?

?

C2 //
?

?

?

C3

?

?

?

C3 C2oo C1oo C0oo dual cochains

A generic description of how this diagram is used to find approximate solutions

to PDEs is as follows.

I. Translate the continuous PDE problem into the language of exterior

calculus.

II. Linearize the problem, possibly by introducing an intermediary vari-

able.

III. Discretize the k-forms into k-cochains and the operators d and ∗ into

D and M matrices.

4



IV. Solve a linear system constructed from the discrete equations.

Our approach focuses on the fact that there are two canonical ways to carry

out the discretization in step III. For instance, let u be a variable treated as a k-

form in the linearized continuous problem. Then u can be treated as an element

of Λk, resulting in its discretization as a primal cochain u, or as an element of

Λ
k
, resulting in its discretization as a dual cochain u. The choice of primal or

dual discretization for u fixes the discretization of the remaining variables and

operators meaning there are only two fundamental methods in this framework.

However, since u and u are approximations of u in different finite dimensional

vector spaces, there may be significant computational advantages to choosing

one discretization over the other.

We will show in this thesis how dual discretization methods can achieve

the same approximation power with the same error estimates as their primal

counterparts and, in some circumstances, may be more computationally ef-

ficient or numerically stable. In the remainder of this chapter, we will put

our work in the context of existing theories and summarize our results more

precisely.

1.2 Context in the Literature

Exterior calculus and its relationship to the numerical analysis of partial

differential equations are currently receiving increasing attention from both

mathematical and computer science research communities. The recent widely

5



acclaimed mathematical work on Finite Element Exterior Calculus (FEEC) by

Arnold, Falk and Winther [7, 6] has shown how many well known results about

stable bases for finite element methods [24, 30, 72, 73, 80] can be characterized

completely using the language of exterior calculus. This can be seen as a ‘top-

down’ approach, since it starts with an abstract Hilbert complex framework

and only specializes to specific interpolation operators at the last step.

Meanwhile, the theory of Discrete Exterior Calculus (DEC) [59, 32]

has taken more of a ‘bottom-up’ approach, starting with discrete differential

form spaces (i.e. cochain spaces) and building up the supporting theory as

required. Many prior efforts have made strides in defining a discrete calculus

in this fashion e.g. [14, 15, 56, 74, 83, 88]. DEC has gained traction in the

field for its straightforward terminology, resulting in its proposed application

to a variety of PDE problems [13, 45, 60, 99]. Moreover, various finite ele-

ment software packages now use the terminology of discrete differential forms,

including DOLFIN [67], PyDEC [12], and Lawrence Livermore National Lab-

oratory’s FEMSTER [25].

This thesis lies somewhere between these two exterior calculus camps.

While the notion of a dual-based method is natural in DEC, it is less obvi-

ous from a FEEC viewpoint since FEEC does not make use of dual cochains.

On the other hand, while DEC theory uses piecewise-defined functions, FEEC

uses the more formal notion of piecewise-defined distributions. This allows

FEEC to leverage results from applied functional analysis to ensure conver-

gence and stability properties of numerical methods. Since DEC relies on

6



these theoretical results from FEEC to claim robustness in its methodology,

the DEC-inspired dual-based methods proposed here must also be justified in

a FEEC context.

1.3 Summary of Results

(1) Generalized Dual-Based Discretization Methodology

(Section 3.1) The first contribution of this thesis is a rigorous and

canonical methodology for constructing dual-based discretizations. The lan-

guage of DEC reveals natural numerical methods in the dual context which

still respect the dimensionality of the continuous problem. While such ap-

proaches have been considered in specific contexts previously, they have not

been given the general treatment afforded by the DEC approach used here.

These constructions allow for rigorous error-checking and cross-confirmation of

the results of large scale simulation efforts. This is particularly valuable when

physical experimental confirmation of the results is impossible or expensive.

(2) Discretization Stability of Dual-Based Methods

(Sections 3.2 - 3.5) A crucial criterion for the viability of a numerical

method for PDEs is a proof that the error converges to zero (in an appropriate

norm) at an optimal rate as the mesh is refined. This is referred to as dis-

cretization stability or an asymptotic optimal error estimate. Starting with a

proof of discretization stability for a primal-based magnetostatics sketched by

Bossavit [19, 20], we show how the proof can be phrased in DEC language in a

7



natural fashion. We then exploit the same techniques to prove the discretiza-

tion stability of dual methods in both specific and general contexts. These

proofs imply that implementing a dual-based methodology would allow, in

theory, equal approximation power as their primal counterparts.

(3) Discretization Stability using Generalized Barycentric Interpo-

lation

(Section 3.6) The proofs of discretization stability of dual-based meth-

ods make use of a composed dual interpolation operator ∗In−kM
−1
n−k : C

k → Λ
k
.

This operator, in effect, translates the dual problem to a primal one in order

to exploit standard stability results. While this is suitable for methods where

both primal and dual variables appear, we show that it is possible to achieve

the same estimate in the case n = 2, k = 0 with a node-based interpolation

operator I0. A form of generalized barycentric interpolation functions called

Sibson or ‘natural neighbor’ coordinates are used to define I0. The discretiza-

tion stability result we prove requires only two modest assumptions on the

cells of the dual mesh: an upper bound on the aspect ratio and a lower bound

on the edge length when the cells are scaled to have diameter 1. The proof

also gives a set of techniques that can be used toward proving similar stability

results for larger values of k and n.

(4) Novel Whitney-like Interpolation Functions for Dual Meshes

(Section 4.1) The canonical construction of Whitney functions used in

the definition of the primal interpolation operators Ik suggests a similar con-

8



struction should be possible for defining generalized interpolation operators

Ik over dual meshes. We define such operators for n = 2 and 3 and show

they share certain similar properties with their primal counterparts, including

the functional continuity properties required for use in finite element meth-

ods. These operators seem natural in the exterior calculus framework but are

unexamined in the current literature.

(5) Numerical Stability from an Inverse Discrete Hodge Star

(Sections 4.2 and 4.3) The discretization stability results ensure that

dual-based methods converge, but numerical stability results are required to

make efficiency versus accuracy tradeoffs between primal and dual methods.

Analysis of the systems considered in Chapter 3 reveals that the definition of

the discrete Hodge star operator Mk and its inverse are crucial to the condition

number of the linear system used to solve the discrete problem. In particu-

lar, we show how to construct a sparse inverse discrete Hodge star operator
(
M

Dual
k

)−1
by making use of the Whitney-like interpolation functions previ-

ously defined. As a proof of concept, we show through a particular example

that the condition number of
(
M

Dual
k

)−1
can be an order of magnitude better

than the standard diagonal and ‘mass matrix’ discrete Hodge stars. The exam-

ple illustrates how a dual-formulated method can offer a practical alternative

to the typical primal approach.

We remark that the techniques developed in this thesis are applicable

to problems in any dimension n, not just n = 3. Since the preponderance of

modern applications are concerned with problems in R
3 however, most results

9



and definitions have been given in this context both for clarity and immediate

applicability to algorithmic design.

Parts of this thesis are based on work we presented in [46, 47, 48].
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Chapter 2

Background and Preliminaries

This thesis relies on a broad background of prior work from the fields

of differential topology, finite element methods, and computational geometry.

The material in this chapter may be read in any order, however, it has been

arranged in consideration of how it is used in the results chapters. Sections 2.1-

2.9 lay the groundwork for Sections 3.1-3.5 while Sections 2.10-2.12 are the

prerequisites for Section 3.6. Chapter 4 relies heavily on Sections 2.6, 2.8, and

2.10.

2.1 Continuous Exterior Calculus

We begin with a formal exposition of exterior calculus in the continuous

setting based on the presentations in [1, 52].

2.1.1 Exterior Algebra

Let V be a vector space and let V p denote the Cartesian product of p

copies of V . A (real) p-tensor on V is a function T : V p −→ R that it is

linear in each variable. The tensor product of a p-tensor T and a q-tensor

11



S is defined by

T ⊗ S(v1, . . . , vp, vp+1, . . . , vp+q) := T (v1, . . . , vp) · S(vp+1, . . . , vp+q)

Note that this operation is not symmetric. A tensor T is called alternating

or anti-symmetric if and only if the sign of T is reversed whenever two

variables are transposed. Let Sp denote the symmetric group on p elements.

An arbitrary tensor T is associated to the alternating tensor Alt T , defined by

Alt T :=
1

p!

∑

π∈Sp

(−1)πT π,

where

T π(v1, . . . , vp) := T (vπ(1), . . . , vπ(p)).

Alternating p-tensors are closed under scalar multiplication and addition, thereby

forming a vector space:

Λp(V ∗) := {Alt T : T is a p-tensor on V }

Definition 2.1. If T ∈ Λp(V ∗) and S ∈ Λq(V ∗), the wedge product of T

and S is defined by

T ∧ S := Alt (T ⊗ S) ∈ Λp+q(V ∗)

♦

2.1.2 Exterior Calculus

Let Ω be an n-manifold embedded in some RN with n ≤ N . Minimally,

we will assume Ω is a bounded subset, but we will usually consider the case

12



n = N = 3 and assume Ω has a piecewise smooth, Lipschitz boundary as this

allows us to identify Ω with its primal mesh (Definition 2.29) or dual mesh

(Definition 2.33).

Definition 2.2. Let Ω be a manifold of dimension n. Given a point x ∈ Ω,

we denote the tangent space of Ω at x by Tx(Ω). Let 0 ≤ k ≤ n. A k-form

ω is a mapping from Ω to the space of alternating k-tensors on the tangent

space of Ω at the input point. We use the notation

ω : Ω → Λk[Tx(Ω)
∗], ω(x) :

k⊕

i=1

Tx(Ω) → R,

where ω(x) is an alternating k-tensor. A 0-form is taken to mean a real-valued

function on Ω. We denote the space of continuous differential k-forms

on Ω by Λk(Ω). ♦

Definition 2.3. A differential dxi is a 1-form whose action at x ∈ M is to

assign the ith value of the input vector from Tx(M). Let I = {i1, . . . , ik} be a

list of indices. Define

dxI := dxi1 ∧ · · · ∧ dxik .

We use the notation aI to a real-valued function in the variables of I.

Theorem 2.4. If {dx1, . . . , dxn} is an orthonormal basis for Tx(Ω) then

{dxI : I = {i1, . . . , ik}, 1 ≤ i1 < · · · < ik ≤ n}

is a basis for Λk(Ω). Put differently, any k-form ω ∈ Λk(Ω) can be written in

the form

ω =
∑

I

aIdxI
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where I ranges over all strictly increasing sequences of k indices.

The theorem is a standard result from differential topology.

Definition 2.5. The space of L2-bounded continuous differential k-

forms on Ω is given by

L2Λk(Ω) :=

{∑

I

aIdxI ∈ Λk(Ω) : aI ∈ L2(Ω) ∀I
}

♦

Definition 2.6. The exterior derivative operator denoted by d is a map

d : Λk(Ω) → Λk+1(Ω),

defined as follows. Let I := {i1, . . . , ik} denote an increasing sequence of k

indices (ij < ij+1) and let dxI = dxi1 ∧ · · · ∧ dxik . Given ω =
∑

I aIdxI define

dω :=
∑

I

daI ∧ dxI where daI :=
∑

i∈I

∂aI
∂xi

dxi. (2.1)

♦

We note that d commutes with pullbacks (that is, df ∗ω = f ∗dω) and

that if ω is a k-form and θ is any form,

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ.

The exterior derivative plays a prominent role in Stokes’ Theorem,

which we now state.
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Theorem 2.7. (Stokes) Given a compact, oriented n-dimensional manifold

Ω with boundary ∂Ω and a smooth (n− 1) form ω on Ω, the following equality

holds: ∫

∂Ω

ω =

∫

Ω

dω.

Stokes’ Theorem provides an alternative definition for the exterior deriva-

tive.

Definition 2.8. (Alternative Definition) Let ω be a k-form on a compact

oriented n-manifold Ω (0 ≤ k < n). The exterior derivative of ω is the

unique (k + 1)-form dω such that on any (k + 1)-dimensional submanifold

Π ⊂ Ω the following equality holds:
∫

Π

dω =

∫

∂Π

ω.

♦

It can be shown that dω is well-defined in this way by proving the

existence and uniqueness of the d map via the definition (2.1). We note that

this definition will motivate the discrete exterior derivative in Definition 2.42.

Definition 2.9. The continuous Hodge star ∗ maps between forms of com-

plementary and orthogonal dimensions, i.e. ∗ : Λk → Λn−k. For domains in

R
3 as considered here, ∗ is defined by the equations

∗dx1 = dx2dx3, ∗dx2 = −dx1dx3, ∗dx3 = dx1dx2,

∗1 = dx1dx2dx3, ∗∗ = 1,

where {dx1, dx2, dx3} is an orthonormal basis for Λ1(Ω). ♦
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A more general treatment of ∗ is given in Appendix A.

2.2 Functional Analysis

2.2.1 Distributions

The classical notion of a derivative relies strongly on the notion of well-

defined point values of functions; one cannot compute f(x + h) − f(x), for

instance, without a definition of the values of f near x. When solving for

solutions of a PDEs, it becomes useful to relax the notion of point values

and, instead, to seek solutions over a space of generalized functions called

distributions. This is especially relevant in solving PDEs over meshes as one

can efficiently seek a solution which is smooth on each element of the mesh

satisfying only minimal continuity requirements at element interfaces.

To make all this precise, we must fix a number of definitions; a complete

treatment can be found in [68]. We use the usual notation for partial deriva-

tives in arbitrary dimensions. An m-tuple α = (α1, . . . , αm) of non-negative

integers is called a multi-index. Define

|α| :=
m∑

j=1

αj and α! :=
m∏

j=1

(αj!)

The derivative with respect to α is

∂α :=
m∏

j=1

(
∂

∂xj

)αj

=
∂|α|

∂xα1

1 · · · ∂xαm
m

.

Hence ∂α is an |α|th partial derivative where αi derivatives are taken with

respect to the ith variable.

16



The space of continuous functions on Ω with continuous mth (mixed)

partial derivatives is denoted

Cm(Ω) :=
{
ψ ∈ C0(Ω) : ∂αψ ∈ C0(Ω) for all |α| ≤ m

}
.

The L∞ norm on Cm(Ω) is given by

||ψ||m,∞,Ω :=
∑

|α|≤m

||∂αψ||L∞(Ω)

The space of continuous, infinitely differentiable functions on Ω with compact

support is denoted

D(Ω) := C∞
0 (Ω) = {ψ ∈ C∞(Ω) : supp(ψ) is compact.}

A sequence of functions can converge in || · ||m,∞,Ω norm to a function without

compact support meaning a stronger norm is required to get a complete metric

space on D(Ω).

Definition 2.10. A sequence {ψj}∞j=1 ⊂ D(Ω) converges to ψ in D(Ω) if

and only if there exists a fixed compact set K ⊂ Ω such that supp(ψj) ⊂ K

for all j and limj→∞ ||ψj − ψ||n,∞,Ω = 0 for all n. ♦

In words, a sequence {ψj} converges in D(Ω) if and only if the ψj have

support in the same compact set K and their derivatives converge uniformly.

From this definition, the usual notion of Cauchy sequences can be used to

show that D(Ω) is complete. We can now define distributions as functionals

on D(Ω).
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Definition 2.11. A distribution on an open domain Ω ⊂ R
n is a (sequen-

tially)1 continuous linear functional on D(Ω). The space of all distributions on

Ω is denoted D
′(Ω). The action of a distribution u on an element ψ ∈ D(Ω)

is denoted < u, ψ > ♦

Definition 2.12. A function f : Ω −→ R is said to be in L1
loc if it is locally

integrable, i.e. if ∫

K

|f | <∞

for all bounded, measurable subsets K ⊂ Ω. Any such function can be associ-

ated with the distribution u defined by

< u, ψ >:=

∫

Ω

fψ

for any ψ ∈ D(Ω). Hence we have a canonical inclusion mapping

ι : L1
loc →֒ D

′(Ω).

A distribution u ∈ D
′(Ω) is said to be regular if there exists f ∈ L1

loc such

that ιf = u. ♦

Note that if x0 ∈ Ω and α is a multi-index, the distribution < u, ψ >:=

∂αψ(x0) is an example of a non-regular or ‘singular’ distribution. In this thesis,

however, we will only be concerned with regular distributions.

The action of an operator on a distribution is expressed via a pullback

operation. Suppose T : D(Ω) −→ D(Ω) is sequentially continuous and linear.

1It can be shown that a linear functional on D(Ω) is continuous if and only if it is
sequentially continuous, hence we put sequentially in parentheses.
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Given a distribution u ∈ D
′(Ω), the pullback T ∗ : D′(Ω) −→ D

′(Ω) is defined

by the relationship

< u, Tψ >=< T ∗u, ψ > ∀ψ ∈ D(Ω),

where T ∗u denotes the pullback of u by T , that is, T ∗u := u◦T ∈ D
′(Ω). This

allows us to define a generalization of the derivative.

Definition 2.13. Given a regular distribution u ∈ D
′(Ω) and a multi-index

α, the derivative of u with respect to α is denoted Dα. It is defined as the

pullback of ∂α on f , i.e.

< Dαu, ψ >:= (−1)|α| < u, ∂αψ > ∀ψ ∈ D(Ω).

With this tool, we can now think about the ∇ operator in R
3 as a differential

operator on distributions given by

∇ := (D(1,0,0), D(0,1,0), D(0,0,1)).

The curl and div operators in R
3 act on vectors of distributions and will be

denoted as usual by ∇× and ∇·, respectively. ♦

In the remainder of the thesis, functions should be understood in a

distributional sense, but we will only need to resort to the terminology defined

here when it is required for proofs and arguments.

We will make use, in particular of the following Sobolev norms and

semi-norms on distributions.
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Definition 2.14. Letm ≥ 0 be an integer. Themth L2 Sobolev semi-norm

over a set Ω ∈ R
n is defined by

|u|2Hm :=
∑

|α|=m

(∫

Ω

|Dαu|2
) 1

2

The mth L2 Sobolev norm is given by

||u||2Hm :=
∑

0≤k≤m

|u|2Hk

The H0 norm is the L2 norm and will be denoted by ||·||L2 . ♦

2.2.2 Hilbert Complexes

Definition 2.15. A realHilbert spaceW is a vector space with a real-valued

inner product (·, ·) such that W is complete with respect to the norm given by

||w||W := (w,w)1/2.

A Hilbert complex (W, d) is a sequence of Hilbert spacesW k and a sequence

of closed, densely defined linear operators dk : W
k → W k+1 such that the range

of dk is contained in the kernel of dk+1, i.e.

dk+1 ◦ dk = 0.

The domain complex (V, d) associated to (W, d) is the sequence of spaces

V k := domain(dk) ⊂ W k along with the graph norm defined via the inner

product

(u, v)V k := (u, v)W k + (dku, dkv)W k+1 .

♦
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2.2.3 The deRham Complex

Definition 2.16. The space of L2-bounded differential forms (Definition 2.5)

along with the exterior derivative map define a Hilbert complex (L2Λ, d). The

associated domain complex, denoted (HΛ, d) is called the L2 deRham com-

plex:

0 // HΛ0
d0 // HΛ1

d1 // · · · dn−1 // HΛn // 0

♦

In the case n = 3, the norms on the spaces HΛk reduce to standard

scalar and vector norms from finite element theory. To understand this reduc-

tion, however, we must define maps between the spaces of differential forms Λk

and spaces of scalar and vector fields over Ω. The maps from forms to fields

are called the sharp (#) maps while the maps from fields to forms are called

the flat (♭) maps.

Since the maps are primarily a technical tool for proving convergence

results, we will only define the flat maps in the case n = 3. A general treatment

of these maps can be found in, for instance, [1, 59].

Definition 2.17. Let n = 3 and let k = 0, 1, 2, or 3. The flat map converts

a scalar field φ : Ω → R (for k = 0 or 3) or vector field ~u : Ω → R
3 (for k = 1

or 2) to a k-form as indicated in Table 2.1. The pre-superscript indicates the

value of k. The field is called the scalar or vector proxy for the associated

form.
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k field associated k-form on Ω given by flat operator

0 φ 0φ(x) : ø −→ R s.t. ø 7→ φ(x)

1 ~u 1~u(x) : Tx(Ω) −→ R s.t. v1 7→ ~u(x) · v1

2 ~u 2~u(x) : (Tx(Ω))
2 −→ R s.t. (v1, v2) 7→ ~u(x) · (v1 × v2)

3 φ 3φ(x) : (Tx(Ω))
3 −→ R s.t. (v1, v2, v3) 7→ φ(x)(v1 · (v2 × v3))

Table 2.1: Definition of flat maps for n = 3.

The flat operators allow us to understand the continuous exterior cal-

culus operators d and ∗ in terms of their actions on the associated scalar and

vector fields.

Lemma 2.18. For n = 3, and φ, ~u as in Definition 2.17, the following rela-

tionships between flat operators hold:

d(0φ) = 1(grad φ) d(1~u) = 2(curl ~u) d(2~u) = 3(div ~u).

∗ 0φ = 3φ ∗ 1~u = 2~u ∗ 2~u = 1~u ∗ 3φ = 0φ

0φ ∧ 3φ = 3(|φ|2) 1~u ∧ 2~u = 3(|~u|2)

Proof. Fix φ and ~u as in Definition 2.17. Fix x ∈ Ω. Write ~u in terms of its

component functions ui : Ω → R, i.e. ~u = (u1, u2, u3). For ease of notation,

we have omitted notation indicating that all partial derivatives are meant to
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be evaluated at x. By Definition 2.17,

0φ = φ

1~u = u1dx1 + u2dx2 + u3dx3

2~u = u1dx2dx3 + u2dx3dx1 + u3dx1dx2

3φ = φdx1dx2dx3

Using the fact that dxi ∧ dxi = 0, we compute

d(0φ) =

(
∂φ

∂x1

)
dx1 +

(
∂φ

∂x2

)
dx2 +

(
∂φ

∂x3

)
dx3

d(1~u) =

(
∂u2
∂x1

− ∂u1
∂x2

)
dx1dx2 +

(
∂u1
∂x3

− ∂u3
∂x1

)
dx3dx1

+

(
∂u3
∂x2

− ∂u2
∂x3

)
dx2dx3

d(2~u) =

(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

)
dx1dx2dx3

d(3φ) = 0

The results are immediate from the definitions of grad, curl, div, d, and ∗.

Definition 2.19. Let n = 3. The H(curl) and H(div) norms on a vector

function ~u : Ω → R
3 are defined by

||~u||H(curl) := ||~u||2[L2]3 + ||curl ~u||2[L2]3

||~u||H(div) := ||~u||2[L2]3 + ||div ~u||2L2

where ||·||[L2]3 denotes the sum of the L2 norms of the component functions of

the vector-valued input. ♦
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Remark 2.20. For n = 3, there is a natural equivalence between norms on

scalar and vector functions and the graph norms of their images under an

appropriate flat mapping. More precisely,

∣∣∣∣0φ
∣∣∣∣
HΛ0 = ||φ||H1

∣∣∣∣1~u
∣∣∣∣
HΛ1 = ||~u||H(curl)

∣∣∣∣2~u
∣∣∣∣
HΛ2 = ||~u||H(div)

∣∣∣∣3φ
∣∣∣∣
HΛ3 = ||φ||L2

Accordingly, the L2 deRham complex can be written equivalently as

H1
grad // H(curl)

curl // H(div)
div // L2. (2.2)

2.3 Primal and Dual Domain Meshes

2.3.1 Manifold-like Simplicial Complexes

In algebraic topology, manifolds are discretized using simplicial com-

plexes, a notion which guides the entire theory of discrete exterior calculus.

We state the definition of simplicial complex here, along with supporting def-

initions to be used throughout. These definitions can be found in algebraic

topology texts such as Armstrong [4], Hatcher [53] and Hirani [59].

Definition 2.21. A k-simplex σk is the convex hull of k + 1 geometrically

independent points v0, . . . , vk ∈ R
N . Any simplex spanned by a (proper) subset

of {v0, . . . , vk} is called a (proper) face of σk. The union of the proper faces

of σk is called its boundary and denoted Bd(σk). The interior of σk is
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Int(σk) = σk\Bd(σk). Note that Int(σ0)=σ0. The volume of σk is denoted

|σk|. Define |σ0| = 1. ♦

We will indicate that a simplex has dimension k with a superscript, e.g.

σk, and will index simplices of any dimension with subscripts, e.g. σi.

Definition 2.22. A simplicial complex K in R
N is a collection of simplices

in R
N such that

I. Every face of a simplex of K is in K.

II. The intersection of any two simplices of K is either a face of each of

them or it is empty.

The union of all simplices of K treated as a subset of RN is called the under-

lying space of K and is denoted by |K|. ♦

Definition 2.23. A simplicial complex of dimension n is called a manifold-

like simplicial complex if and only if |K| is a C0-manifold, with or without

boundary. More precisely,

I. All simplices of dimension k with 0 ≤ k ≤ n− 1 must be a face of some

simplex of dimension n in K.

II. Each point on |K| has a neighborhood homeomorphic to Rn or n-dimensional

half-space. ♦
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Remark 2.24. Since DEC is meant to treat discretizations of manifolds, we

will assume all simplicial complexes are manifold-like from here forward. We

note that |K| is thought of as a piecewise linear approximation of a smooth

manifold Ω. Formally, this is taken to mean that there exists a homeomorphism

h between |K| and Ω such that h is isotopic to the identity. In applications,

however, knowing h or Ω explicitly may be irrelevant or impossible as K often

encodes everything known about Ω. This emphasizes the usefulness of DEC

as a theory built for discrete settings. ♦

2.3.2 Orientation of Simplicial Complexes

We now review how to orient a simplicial complex K. The definitions

and conventions adopted here are taken from Hirani [59].

Definition 2.25. Define two orderings of the vertices of a simplex σk (k ≥ 1)

to be equivalent if they differ by an even permutation. Thus, there are two

equivalence classes of orderings, each of which is called an orientation of σk.

If σk is written as [v0, . . . , vk], the orientation of σk is understood to be the

equivalence class of this ordering. ♦

Definition 2.26. Let σk = [v0, . . . , vk] be an oriented simplex with k ≥ 2.

This gives an induced orientation on each of the (k − 1)-dimensional faces

of σk as follows. Each face of σk can be written uniquely as [v0, . . . , v̂i, . . . , vk],

where v̂i means vi is omitted. If i is even, the induced orientation on the face

is the same as the oriented simplex [v0, . . . , v̂i, . . . , vk]. If i is odd, it is the

opposite. ♦
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We note that this formal definition of induced orientation agrees with

the notion of orientation induced by the boundary operator (Definition 2.41).

In that setting, a 0-simplex can also receive an induced orientation.

Remark 2.27. We will need to be able to compare the orientation of two ori-

ented k-simplices σk and τ k. This is possible only if at least one of the following

conditions holds:

I. There exists a k-dimensional affine subspace P ⊂ R
N containing both

σk and τ k.

II. σk and τ k share a face of dimension k − 1.

In the first case, write σk = [v0, . . . , vk] and τ k = [w0, . . . , wk]. Note that

{v1 − v0, v2 − v0, . . . , vk − v0} and {w1 − w0, w2 − w0, . . . , wk − w0} are two

ordered bases of P . We say σk and τ k have the same orientation if these bases

orient P the same way. Otherwise, we say they have opposite orientations. In

the second case, σk and τ k are said to have the same orientation if the induced

orientation on the shared k− 1 face induced by σk is opposite to that induced

by τ k. ♦

Definition 2.28. Let σk and τ k with 1 ≤ k ≤ n be two simplices whose

orientations can be compared, as explained in Remark 2.27. If they have the

same orientation, we say the simplices have a relative orientation of +1,

otherwise −1. This is denoted as sgn(σk, τ k) = +1 or −1, respectively. ♦
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Definition 2.29. A manifold-like simplicial complex K of dimension n is

called an oriented manifold-like simplicial complex if adjacent n-simplices

agree on the orientation of their shared face. Such a complex will be called a

primal mesh from here forward. ♦

2.3.3 Dual Complexes

Dual complexes are defined relative to a primal mesh. While they

represent the same subset of RN as their associated primal mesh, they create

a different data structure for the geometrical information and become essential

in defining the various operators needed for DEC.

Definition 2.30. The circumcenter of a k-simplex σk is given by the center

of the unique k-sphere that has all k + 1 vertices of σk on its surface. It is

denoted c(σk). A simplex σk is said to be well-centered if c(σk) ∈ Int(σk).

A well-centered simplicial complex is one in which all simplices (of all

dimensions) in the complex are well-centered. ♦

Definition 2.31. Let K be a well-centered primal mesh of dimension n and

let σk be a simplex in K. The circumcentric dual cell of σk, denoted D(σk),

is given by

D(σk) :=
n−k⋃

r=0

⋃

σk≺σ1≺···≺σr

Int(c(σk)c(σ1) . . . c(σr)).

To clarify, the inner union is taken over all sequences of r simplices such that

σk is the first element in the sequence and each sequence element is a proper

face of its successor. Hence, σ1 is a (k + 1) simplex and σr is an n simplex.
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For r = 0, this is to be interpreted as the sequence σk only. The closure of the

dual cell of σk is denoted D̄(σk) and called the closed dual cell. We will use

the notation ⋆ to indicate dual cells, i.e.

⋆σ := D̄(σ).

Each (n−k)-simplex on the points c(σk), c(σ1), . . . , c(σr) is called an elemen-

tary dual simplex of σk. The collection of dual cells is called the dual cell

decomposition of K and denoted D(K) or ⋆K. ♦

Some examples of dual cells are shown in Figure 2.1 and discussed in

its caption. Note that the dual cell decomposition forms a CW complex (see

Munkres [71] for more on this).

2.3.4 Orientation of Dual Complexes

Orientation of the dual complex must be done in a such a way that it

“agrees” with the orientation of the primal mesh. This can be done canon-

ically since a primal simplex and any of its elementary dual simplices have

complementary dimension and live in orthogonal affine subspaces of RN . We

make this more precise and fix the necessary conventions with the following

definitions.

Definition 2.32. Let K be a primal mesh containing a sequence of simplices

σ0 ≺ σ1 ≺ · · · ≺ σn and let σk be one of these simplices with 1 ≤ k ≤ n − 1.

The orientation of the elementary dual simplex with vertices c(σk), . . . , c(σn)
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σ0

⋆σ0

σ1

⋆σ1

σ2

⋆σ2

Figure 2.1: Primal simplices are shown in black in the top row: σ0 is a vertex,
σ1 is an edge, and σ2 is a face. Their corresponding dual cells for n = 2 are
shown in red (or grey, if no color) on the bottom row: ⋆σ2 is the barycenter
of σ2, ⋆σ1 is an edge between barycenters, and ⋆σ0 is a planar polygon with
barycenters as vertices. In three dimensions (n = 3), primal vertices have dual
polytopes, primal edges have dual polygonal facets, primal faces have dual
edges, and primal volumes have dual vertices.
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is s[c(σk), . . . , c(σn)] where s ∈ {−1,+1} is given by the formula

s := sgn
(
[c(σ0), . . . , c(σk)], σk

)
× sgn

(
[c(σ0), . . . , c(σn)], σn

)
.

The sgn function was defined in Definition 2.28.

For k = n, the dual element is a vertex which has no orientation. For

k = 0, define s := sgn ([c(σ0), . . . , c(σn)], σn). ♦

The above definition serves to orient all the elementary dual simplices

associated to σk and hence all simplices in a dual cell decomposition. Further,

the orientations on the elementary dual simplices induce orientations on the

boundaries of dual cells in the same manner as given in Definition 2.26. The

induced orientations on adjacent (n − 1) cells will agree since the dual cell

decomposition comes from a primal mesh (see Definition 2.29).

Definition 2.33. The oriented dual cell decomposition of a primal mesh is

called the dual mesh. ♦

2.4 Functional Conformity over Meshes

Having described domain decomposition via primal and dual meshes

and their refinements, we can now seek solutions to PDEs defined piecewise

over each mesh element. To ensure that the global solution lies in the ap-

propriate space of the L2 deRham complex (see (2.2)), certain compatibility

conditions must be satisfied at the interface of two adjacent mesh elements. A

useful reference for this material is Ern and Guermond [38].
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Theorem 2.34. Let K denote a primal or dual mesh with n = 3. Let u be a

distribution over K such that for each element T ∈ K, u ∈ C1(Int T ) and u

has a continuous extension from Int T to ∂T . Let F denote a codimension 1

internal facet in T , shared by mesh elements denoted T1 and T2. Let n̂i denote

the outward normal vector to Ti with respect to facet F , and let ui denote the

continuous extension of u from Ti to F . Then

u ∈ H1(K) ⇐⇒ u1n̂1 + u2n̂2 = 0, ∀F ∈ K. (2.3)

Proof. The proof is adapted from Ern and Guermond [38]. Let wj ∈ L2(K)

be defined by wj|Int T := ∂j(u|Int T ). Let ψ ∈ D(K). By the definitions in

Section 2.2.1 and by Stokes’ theorem,

< wj, ψ > =

∫

K

wjψ =
∑

T∈K

∫

T

wjψ

= −
∑

T∈K

∫

T

u|Int T∂jψ +
∑

T∈K

∫

∂T

ψ(u|Int TnT,j)

= − < Dju, ψ > +
∑

T∈K

∫

∂T

ψ(u|Int TnT,j)

where nT,j is the jth component of n̂T . Hence showing that the last sum is

identically zero is both necessary and sufficient to say that u has a jth partial

derivative in L2(K) in a distributional sense. Regroup this sum to arrive at

∑

T∈K

∫

∂T

ψ(u|Int TnT,j) =
∑

F∈K
ψej · (u1n̂1 + u2n̂2)

where {e1, e2, e3} is the standard basis for R3. Thus ej · (u1n̂1+u2n̂2) must be

identically zero for j = 1, 2, 3, yielding the result.
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Corollary 2.35. If u1 ≡ u2 on each face F ∈ K then u ∈ H1(K).

Proof. Since n̂2 = −n̂1, condition (2.3) can be re-written as

(u1 − u2)n̂1 = 0, ∀F ∈ K,

from which the result follows.

Theorem 2.36. Let K denote a primal or dual mesh with n = 3. Let ~z :=

< u1, u2, u3 > be a vector of distributions over K where each ui satisfies the

hypotheses of Theorem 2.34. Let ~zi denote the continuous extension of ~z from

Ti to F . The following characterizations hold.

~z ∈ H(curl) ⇐⇒ ~z1 × n̂1 + ~z2 × n̂2 = 0, ∀F ∈ K,

~z ∈ H(div) ⇐⇒ ~z1 · n̂1 + ~z2 · n̂2 = 0, ∀F ∈ K.

The proof of Theorem 2.36 works in the same way as the proof of

Theorem 2.34.

Corollary 2.37. For each F ∈ K, write ~zi = TF (~zi) + NF (~zi) where TF (~zi)

and NF (~zi) are the tangential and normal components of ~zi on F , respectively.

i. If TF (~z1) = TF (~z2) for all F ∈ K then ~z ∈ H(curl).

ii. If NF (~z1) = NF (~z2) for all F ∈ K then ~z ∈ H(div).

Proof. The result follows from the observations that NF (~zi) × n̂i = 0 and

TF (~zi) · n̂i = 0.
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The functional conformity theorems provide sufficient conditions to en-

sure the various types of continuity required for piecewise approximation of

solutions to PDEs. It will be shown how associating degrees of freedom of the

solutions with mesh vertices, edges, or faces can yield solutions guaranteed

to be in H1, H(curl), or H(div), respectively. Hence, the take-away message

from the functional conformity theorems is that functions with HΛk confor-

mity require agreement along k-dimensional mesh elements.

In the finite element world, this dimensionality observation was made

famous by the elements of Nédélec [72, 73] and Raviart and Thomas [80].

It was popularized in the field of electromagnetics [33, 9] and expanded to

nearly-rectangular grids by Hyman and Shashkov [64, 63, 65]. Bossavit [20]

and Hiptmair [55] championed a more general theory along these lines, leading

the way toward the theories of finite element exterior calculus and discrete

exterior calculus of today.

2.5 Discrete Exterior Calculus

2.5.1 Discrete Differential Forms

Definition 2.38. Let K be a primal mesh of a compact n-manifold Ω. Let

Kk denote the k-simplices of K. A primal k-chain c is a linear combination

of the elements of Kk:

c =
∑

σ∈Kk

cσσ,

where cσ ∈ R. The set of all such chains form the vector space of primal

k-chains, denoted Ck. It has dimension |Ck|, equal to the number of elements
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of Kk. A k-chain c is represented as a column vector of length |Ck|.

Similarly, a dual k-chain is a linear combination of k-cells of the dual

complex ⋆K. The vector space of dual k-chains is denoted Ck. ♦

Definition 2.39. A primal k-cochain w is a linear functional on primal

k-chains, i.e.

w : Ck → R via c 7→ w(c),

where w is a linear mapping. It is represented as a column vector of length

|Ck| so that the action of w on a k-chain c is the matrix multiplication wT c,

yielding the scalar w(c). The space of primal cochains is denoted Ck.

A dual k-cochain w is a linear functional on dual k-chains, i.e.

w : Ck → R via c 7→ w(c),

where w is a linear mapping. The space of dual cochains is denoted Ck
. ♦

Cochains are the discrete analogues of differential forms as they can be

evaluated over k-dimensional subspaces. To make this precise, we define the

integration of a cochain over a chain to be the evaluation of the cochain as a

function.

Definition 2.40. The integral of a primal k-cochain w over a primal k-chain

c is defined to be ∫

c

w := wT c = w(c).

Hence, the integration of w over c is exactly the same as the evaluation of w

on c. ♦
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2.5.2 Discrete Exterior Derivative

The definition of a discrete exterior derivative is motivated by the al-

ternative definition of the continuous operator (Definition 2.8). First we define

the boundary operator in the discrete case.

Definition 2.41. The kth boundary operator denoted by ∂k takes a primal

k-chain to its primal (k − 1)-chain boundary. It is defined by its action on an

oriented k-simplex:

∂k[v0, v1, · · · , vk] :=
k∑

i=0

(−1)i[v0, · · · , v̂i, · · · , vk]

where v̂i indicates that vi is omitted. The primal boundary operator is repre-

sented as a matrix of size |Ck−1| × |Ck| so that the action of ∂k on a k-chain c

is the usual matrix multiplication ∂kc. ♦

Definition 2.42. The kth discrete exterior derivative of a primal k-

cochain w is the transpose of the (k + 1)st boundary operator:

Dk = ∂Tk+1.

This is also referred to in the literature as the coboundary operator. It is

represented as a matrix of size |Ck+1|×|Ck| so that the action of Dk on a primal

k-cochain w is the usual matrix multiplication Dkw := ∂Tk+1w. ♦

The discrete exterior derivative satisfies the discrete version of Stokes’

theorem.
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Lemma 2.43. Let w be a primal k-cochain and c ∈ Ck+1 any primal (k + 1)-

chain. Then ∫

c

Dkw =

∫

∂k+1c

w.

Proof. By Definition 2.40 we see that

∫

∂k+1c

w = wT∂k+1c = (∂Tk+1w)T c = (Dkw)T c =

∫

c

Dkw.

We now consider the analogous constructions for dual cochains. Ob-

serve that mesh duality allows us to view a dual k-chain c as a primal (n− k)-

chain c. Hence ∂Tn−k+1 serves as a boundary operator on dual k-cochains, giving

us the following definition.

Definition 2.44. The kth discrete exterior derivative of a dual k-cochain

w is D
T
n−k−1, which is equal to ∂n−k. It is represented as a matrix of size

|Ck+1| × |Ck|. ♦

2.5.3 Primal and Dual Projection Maps

The Pk and Pk maps are deRham projection maps, from k-forms to

primal or dual k-cochains. The intuitive definition of the maps is simple enough

to describe. For example, Pku should be a primal k-cochain whose ith entry

represents the integral of the k-form u over the ith primal k-simplex.

To make this precise, however, a choice must be made between ease

of definition and the amount of continuity assumed for u. For instance, if
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ψ is a 0-form over Ω ⊂ R
3, then ψ is properly treated as a distribution as

described in Section 2.2.1. Since distributions need not have well-defined point

values, the notion of the “integral of ψ over a 0-simplex” has little hope of

leading to a simple definition for P0ψ. Still, from a physical perspective, there

is no problem with this notion; if ψ represents an electric potential, it can

be measured at an arbitrary point location by a voltmeter or other device

appropriate to the scale of Ω.

This issue is one of the dividing lines between the finite element exterior

calculus (FEEC) and discrete exterior calculus (DEC) camps (see Section 1.2).

In the DEC camp, it is assumed that there is a well-defined value of the integral

of a k-form over a k-dimensional primal or dual mesh element. The resulting

definitions of Pk and Pk are simple:

Pk(u) :=

{∫

σk
i

u

}

i

and Pk(u) :=

{∫

⋆σn−k
i

u

}

i

These definitions are not adequate in the FEEC camp since, in that setting,

the minimal continuity requirements on u (e.g. H1 for k = 0) are not sufficient

to guarantee that
∫
σk
i

u is well defined.

To deal with this problem, u is L2-projected to a differential form whose

coefficient functions are polynomials of degree at most r . This process is called

Clément interpolation2 and can be used to get optimal order error estimates.

2In the finite element community, ‘interpolation’ typically refers to a mapping from a
form or function space to a piecewise polynomial space. This can be understood as the
composition IkPk in the terminology of this thesis.
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Unfortunately, Clément interpolation lacks certain necessary proper-

ties required for stability analysis such as commutativity with the exterior

derivative operator. To resolve this, Arnold, Falk and Winther have defined

smoothed projection operators which do satisfy these properties [7, 6]. Their

approach is based on the tools of Schöberl [81] and was refined by Chris-

tensen [27]. The operators take as input a k-form, convolve it with a mollifier

function, and restrict it to each mesh element. The output of this smoothing

is a k-form with sufficient smoothness to be integrated over the k-simplices of

the mesh.

The precise definition of the smoothed interpolation operators will not

be given in this thesis as it is not needed for our analysis. Further, extending

the definition of the smoothed projection operators to apply on non-simplicial

dual meshes is non-trivial. Thus, we will use a slightly more formal definition of

the projection maps than the DEC community and assume sufficient regularity

on their inputs to ensure they are well-defined. We will also note when it is

possible to use the smoothed projections to get the same results with fewer

regularity assumptions, at least for primal meshes.

Definition 2.45. Given a k-simplex σk
i or dual k-cell ⋆σn−k

i associated to a

primal mesh K ⊂ R
N , define the inclusion mapping

φ : σk
i →֒ K, or φ : ⋆σn−k

i →֒ K.

The projection maps of a k-form u on Ω are defined by

Pk(u) :=

{∫

σk
i

φ∗u

}

i

(2.4)
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Pk(u) :=

{∫

⋆σn−k
i

φ∗u

}

i

(2.5)

In words, the ith entry of the cochain is the integral over the ith primal or

dual cell of the pullback of u by the appropriate inclusion mapping. ♦

For example, consider the effect of the mapping P1 on a 1-form u with

respect to a tetrahedral mesh in R
3. The ith entry of P1u is then

{P1(u)}i =
∫

σk
i

u♯ ·
~σk
i

|σk
i |
.

In words, this is the vector proxy of u (denoted u♯), projected onto a unit

vector in the direction of edge σ1
i , and integrated over σ1

i . Hence, the pullback

results in a computation of the circulation of u over the edge. Similarly, the

pullback of a 2-form u in R
3 to a face yields the flux of u over the face. More

examples can be found in Guillemin and Pollack [52, Chapter 4].

2.6 Whitney Interpolation for Primal Meshes

While the deRham maps defined in Section 2.5.3 provide a way to

project continuous differential forms to discrete cochains, we also need maps

to reconstruct continuous differential forms from cochain data. We call such

maps interpolation maps and focus in this section on maps from primal

cochain spaces to form spaces. We want maps of the form

Ik : Ck → Λk given by Ik(w) :=
∑

σk∈Ck

w(σk)Wσk , (2.6)

where Wσk is a basis function associated to the k-simplex σk. These basis

functions should be defined so that the following natural properties hold.
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W1. Conformity in HΛk: Ik(w) ∈ HΛk

W2. Local support: supp Wσk ⊆
⋃

σn≻σk

σn

W3. Interpolation:

∫

σk
i

φ∗(Wσk
i
) = 1

W4. Optimal Convergence: ||u− IkPku||HΛk ≤ C md

W5. Commutativity with exterior derivative: dkIk = Ik+1Dk

A natural construction for theWσk functions was given by Whitney [96]. These

functions have proved to be so useful that they are usually called Whitney

functions.

Definition 2.46. Let λi be the barycentric function associated to vertex

vi in a primal mesh K. More precisely, λi : K → R is the unique function

which is linear on each simplex of K satisfying λi(vj) = δij . The Whitney

function Wσk associated to the k-simplex σk := [v0, . . . ,vk] is given by

Wσk := k!
k∑

i=0

(−1)i λi dλ0 ∧ . . . ∧ d̂λi ∧ . . . ∧ dλk (2.7)

where d̂λi indicates that dλi is omitted. Note that dλ should be interpreted

as d 0λ per Definition 2.17 or as 1(∇λ) per Lemma 2.18. ♦

We write out the Whitney functions explicitly for n = 3, our primary

application context. Note that Wσ3 is the constant function with value 1/|σ3|.

41



k σk Wσk

0 [v0] λ0

1 [v0,v1] λ0∇λ1 − λ1∇λ0
2 [v0,v1,v2] 2(λ0∇λ1 ×∇λ2 − λ1∇λ0 ×∇λ2 + λ2∇λ0 ×∇λ1)
3 [v0,v1,v2,v3] 1/|σ3|

Table 2.2: Whitney forms Wσk for n = 3.

This is a consequence of the geometric identity

∇λi · (∇λj ×∇λk) = ± 1

3!|σ3|

where the right side has sign −1 if an odd index was omitted from the scalar

triple product and +1 otherwise. This reduces the sum in (2.7) to (1/|σ3|)
∑

i λi,

which is simply 1/|σ3| due to the partition of unity formed by the barycentric

functions.

Theorem 2.47. The Whitney functions satisfy properties W1-W5.

Proof. Property W2 is immediate. The commutativity property W5 and op-

timal convergence W4 are discussed in Section 2.7. The conformity property

W1 and interpolation property W3 is given by Corollary 4.5.

Prior Work on Whitney functions

Although Whitney functions were developed out of theoretical consid-

erations [96], it was recognized by Bossavit [16] that they provided a natural

means for constructing stable bases for finite element methods, especially the
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edge elements and face elements that were gaining popularity at that time.

Finite element exterior calculus (FEEC) [7] gives a full account of the analo-

gies between spaces of Whitney functions and classical Nédélec [72, 73] and

Raviart and Thomas [80] spaces.

Some work has explored the possibility of Whitney functions over non-

simplicial elements as we do in this work. Gradinaru and Hiptmair defined

Whitney-like functions on rectangular grids using Haar-wavelet approxima-

tions [50] and on square-base pyramids by considering the collapse of a cube

to a pyramid [51]. Bossavit has given an approach to Whitney forms over

standard finite element shapes (hexahedra, triangular prisms, etc.) based on

extrusion and conation arguments [21]. The Whitney-like functions we present

in Chapter 4 do not use such heuristics and are defined over the convex poly-

hedra of a dual mesh instead of specific shape types.

2.7 Operator Commutativity

A number of commutativity relations between the continuous and dis-

crete operators will be required for the stability proofs.

Theorem 2.48. The following commutativity relationships hold. The diagram

for each is shown in Figure 2.2.

i. Pk+1dk = DkPk

ii. dkIk = Ik+1Dk
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iii. Pk+1dk = D
T
n−k−1Pk

iv. dn−k−1(∗Ik+1M
−1
k+1) = (∗IkM

−1
k )DT

k

Λk

Pk

��

dk // Λk+1

Pk+1

��
Ck

Dk // Ck+1

Λk
dk // Λk+1

Ck

Ik

OO

Dk // Ck+1

Ik+1

OO

(i) (ii)

Λk

Pk

��

dk // Λk+1

Pk+1

��

Ck
D
T
n−k−1 // Ck+1

Λn−k−1
dn−k−1 // Λn−k

Cn−k−1

∗Ik+1M
−1

k+1

OO

D
T
k // Cn−k

∗IkM−1

k

OO

(iii) (iv)

Figure 2.2: Commutativity diagrams between discrete and continuous opera-
tors (see Theorem 2.48).
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Proof. (i) Let u ∈ Λk. Then

Pk+1dku =

{∫

σk+1

j

φ∗(du)

}

j

definition of Pk+1

=

{∫

σk+1

j

d(φ∗u)

}

j

d and φ∗ commute

=

{∫

∂σk+1

j

φ∗u

}

j

Stokes’ theorem

= Dk

{∫

σk
i

φ∗u

}

i

definition of Dk

= DkPku definition of Pk.

(ii) We prove a particular instance of this result demonstrating all the

relevant proof techniques. Fix n = 2, k = 0 and take the mesh to be a single

2-simplex σ2 := [ v1 v2 v3 ]. Let w ∈ C0 be represented by [ a1 a2 a3 ]T .

Thus

D0 =




−1 1 0
−1 0 1
0 −1 1


 .
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We will show that dI0 = I1D0, i.e. that d
0(I0w) = 1(I1D0w).

1(I1D0w)

= 1I1



a2 − a1
a3 − a1
a3 − a2


 , definition of D0

= 1((a2 − a1)(λ1∇λ2 − λ2∇λ1) + · · · ), definition of I1

= 1(a1(λ2∇λ1 − λ1∇λ2

+λ3∇λ1 − λ1∇λ3 + · · · ), factor by ai

= 1(a1(∇λ1(λ2 + λ3)− λ1(∇λ2 +∇λ3)) + · · · ), collect terms

= 1(a1(∇λ1(1− λ1)− λ1∇(1− λ1)) + · · · ), partition of 1

= 1(a1∇λ1 + a2∇λ2 + a3∇λ3), simplify

= d 0(a1λ1 + a2λ2 + a3λ3), Lemma 2.18

= d 0(I0w), definition of I0.

The proof for arbitrary n and k values uses the same techniques in a generalized

context. The key idea is that the d operator wedges on differentials (see

Definition 2.6) while the Whitney operator omits them (see Definition 2.46).

Whitney gave the generalized proof in his seminal work [96, Section IV.27];

it can also be found in the finite difference approach of Dodziuk [35] and

elsewhere.

(iii) The argument is the same as the proof for part (i), with the

appropriate P maps replacing the P maps and the D
T
n−k−1 matrix replacing

the Dk matrix.
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(iv) To see why this result holds, we apply ∗ on both sides, yielding

(∗dn−k−1∗)Ik+1M
−1
k+1 = (IkM

−1
k )DT

k .

We remark the formal adjoint of dk, denoted δk, is called the coderivative

and can be characterized by

δk : Λ
k+1 → Λk, δk := ∗dn−k−1∗

Therefore, part (iv) says that δkIk+1M
−1
k+1 = (IkM

−1
k )DT

k , i.e., the natural

notions of coderivative in the continuous and discrete settings commute with

the dual cochain interpolation operator IkM
−1
k . The proof mimics that of part

(ii).

Remark 2.49. If Pk is defined instead using the smoothed projection operators

(see Section 2.5.3), results (i) and (ii) follow from [7, Theorem 5.9 part 3].

We also have a standard estimate from the literature for the error be-

tween IkPk and the identity map. We state it here in the language of discrete

exterior calculus. A proof from a finite difference perspective for arbitrary k

can be found in Dodziuk [35, Corollary 3.27] and from a finite element per-

spective for 0 ≤ k ≤ 3 in Ern and Guermond [38, Section 1.5]. If the smoothed

projection operators are used, this result also follows from Arnold, Falk and

Winther [7, Theorem 5.9].

Theorem 2.50. Fix a primal mesh K and let u be an element of Λk with

enough regularity that Pku is well-defined. We express this condition by saying
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that u is bounded in some norm ||·||P on Λk. Then there exists a constant C

independent of md such that

||u− IkPku||HΛk ≤ C md ||u||P , (2.8)

where md indicates the maximum diameter of any mesh element in K.

Remark 2.51. By the definitions of Ik and Pk, we have that

||u− IkPku||HΛk =

∣∣∣∣∣∣

∣∣∣∣∣∣
u−

∑

σk
i ∈Ck

(∫

σk
i

φ∗u

)
Wσk

i

∣∣∣∣∣∣

∣∣∣∣∣∣
HΛk

Thus, in words, (2.8) says that when the Whitney functions are weighted

appropriately by local integrals of u, they converge to u with order md.

2.8 Discrete Hodge Stars

A discrete Hodge star M maps not only between cochains of comple-

mentary dimensions (k and n−k) but also between cochains on primal meshes

and cochains on dual meshes. That is,

M : Ck → Cn−k

This duality in both domain and dimension has been recognized by Bossavit [17],

Hiptmair [56], Tonti [89] and others, in various contexts. Unlike the exterior

derivative, however, there is no single canonical way to define the discrete

Hodge star operator. As a consequence, the choice of an appropriate discrete

Hodge star becomes essential to the stability properties of numerical methods

where one is needed.
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The simplest discrete Hodge star to formulate is called the diagonal

discrete Hodge star. Since it will serve as our “default” discrete Hodge star,

we will denote it by Mk or MDiag
k if context is needed. Its entries are given by

(Mk)ij :=
| ⋆ σk

i |
|σk

i |
δij . (2.9)

Since Mk is diagonal, we have its inverse immediately:

(M−1
k )ij :=

|σk
i |

| ⋆ σk
i |
δij. (2.10)

Hence, the effect of Mk on a k-cochain w can be thought of as averaging the

value of w over each simplex σk
i then scaling those values by the size of the

respective dual simplices ⋆σk.

The primary alternative to Mk employs Whitney interpolants in its

definition and will be referred to as the Whitney discrete Hodge star:

(MWhit
k )ij :=

∫

K

Wσk
i
· Wσk

j
(2.11)

Dodziuk [35] originally proposed the definition of MWhit
k but it has been called

the Galerkin Hodge [19] for its relation to finite element methods, as we discuss

in Section 3.5.

Since the basis function Wσk
i
has local support (property W2), MWhit

k is

a sparse matrix. The inverse matrix (MWhit
k )−1 may be of full rank, however,

making it unsuitable for numerical methods. The topological thresholding

technique of He [54] is one approach to alleviating this problem. We will

present a direct definition for an inverse discrete Hodge star with guaranteed

sparsity in Section 4.2.
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Remark 2.52. We have defined our dual meshes using circumcenters of sim-

plices and hence produced orthogonal meshes. This is the natural choice for

dual mesh definition from DEC theory [32]. Bossavit has pointed out, how-

ever, that switching from Mk to M
Whit
k should be accompanied by a switch

from circumcentric to barycentric dual meshes. While this loses the orthogo-

nality between the meshes, it ensures that σk will intersect ⋆σk in the ambient

space and allows certain geometric identities to work out nicely [19].

Still, it is not evident that the switch from barycentric to circumcentric

dual meshes is necessary from a stability standpoint. The ‘geometric’ Hodge

star of Auchmann and Kurz [8], for instance, is like M
Whit
k with a correction

factor for the difference between circumcenters and barycenters and is shown

by the authors to be equivalent to M
Whit
k in a natural sense. More recently,

Hirani and Kalyanaraman [58] used their DEC method for Darcy flow with

both Mk and M
Whit
k over circumcentric dual meshes and found similar numeri-

cal results. The importance of the choice of dual simplex centers is an ongoing

area of research.

Many other discrete Hodge stars appear in the literature, including

the combinatorial discrete Hodge star of Wardetzsky and Wilson [92, 97] and

the metrized chain Hodge star of DiCarlo et al. [34]. These discrete Hodges

are based on a different type of discrete theory and thus cannot be compared

directly to the more common Mk and M
Whit
k matrices.

The maps defined thus far are summarized in Figure 2.3.
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H1
grad //

P0

��

zz

∗

$$
H(curl) curl //

P1

��

{{

∗

##
H(div) div //

P2

��

L2

P3

��
C0

D0 //

I0

OO

M0

��

C1
D1 //

I1
OO

M1

��

C2
D2 //

I2
OO

M2

��

C3

I3

OO

M3

��

C3

(M0)−1

OO

C2

(D0)T
oo

(M1)−1

OO

C1

(D1)T
oo

(M2)−1

OO

C0

(D2)T
oo

(M3)−1

OO

Figure 2.3: The combined DEC and deRham diagram for a contractible do-
main in R

3.

2.9 Discrete Norms and Inner Products

To define discrete analogues of our continuous norms, we begin by defin-

ing a pairing between primal and dual cochains of complementary dimensions.

Let a ∈ Ck and b ∈ Cn−k
. Define

< a,b >=< b,a >:=
∑

σk
i ∈Ck

a(σk
i )b(⋆σ

k
i ) (2.12)

As the next lemma shows, this pairing is natural in the way it relates to the

discrete exterior derivative operators.

Lemma 2.53. For any cochains a ∈ Ck, b ∈ Cn−k−1
, 〈Dka,b〉 =

〈
a,DT

k b
〉
.

Proof. The proof is a typical linear algebra argument of switching the order
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of summation.

〈Dka,b〉 =
∑

σi∈Ck+1

(Dka)(σ
k+1
i )b(⋆σk+1

i )

=
∑

σi∈Ck+1


∑

σj∈Ck

(Dk)ija(σ
k
j )


b(⋆σk+1

i )

=
∑

σj∈Ck


 ∑

σi∈Ck+1

(Dk)jib(⋆σ
k+1
i )


a(σk

j )

=
∑

σj∈Ck

(DT
k b)(⋆σ

k
j )a(σ

k
j )

=
〈
a,DT

k b
〉

Moreover, the pairing allows us to define a discrete norm for the primal

and dual cochain spaces.

Definition 2.54. Given a ∈ Ck or b ∈ Ck
, define the cochain norms

||a||2Ck := 〈a,Mka〉 , ||b||2Ck :=
〈
M

−1
n−kb,b

〉
, (2.13)

where Mk is the diagonal discrete Hodge star from (2.9). ♦

The cochain norms are defined using the diagonal discrete Hodge star,

but as the next lemma will show, using the Whitney discrete Hodge star results

in the same norm up to uniform scaling of the mesh. This is a technical result

which will be needed in our stability proofs.

52



Lemma 2.55. Let K be a finite primal mesh with n = 3. Define a functional

Qk : Ck → R by

Qk(a) :=< a,MWhit
k a > (2.14)

For any cochains a ∈ Ck and b ∈ Cn−k
, the quotients

||a||2Ck

Qk(a)
and

||b||2C3−k

Qk(M
−1
k b)

are unaffected if K is uniformly scaled by a positive factor s ∈ R.

Proof. We start with the claim for primal cochains. Let ||·||Ck(sK) denote the

cochain norm on the scaled mesh. Observe that

||a||2Ck(sK) =
∑

σk
i ∈Ck

s3−k| ⋆ σk|
sk|σk| a(σk

i )
2 = s3−2k||a||2Ck . (2.15)

It suffices to show that the entries of MWhit
k also scale as s3−2k. Note that by

the chain rule we have

∇
(
λi

(x
s

))
=

1

s
(∇λi)

(x
s

)
. (2.16)

Recalling Table 2.2, we see that Wσk has exactly k terms of the type ∇λi
appearing in each summand of its expression. Let (MWhit

k,s )ij denote the ijth

entry of MWhit
k on the scaled mesh. Then

(MWhit
k,s )ij =

∫

sK

1

sk
Wσk

i

(x
s

)
· 1

sk
Wσk

j

(x
s

)

=
s3

s2k

∫

K

Wσk
i
(x) · Wσk

j
(x) = s3−2k(MWhit

k )ij,
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as desired. For the dual cochain claim, we have that

||b||2C3−k
(sK)

=
∑

σk
i ∈Ck

sk|σk|
s3−k| ⋆ σk|b(⋆σ

k
i )

2 = s2k−3||b||2C3−k . (2.17)

To show that the denominator scales the same way, observe that

Qk(M
−1
k b) = (M−1

k b)TMWhit
k (M−1

k b).

Thus, the value of Qk(M
−1
k b) scales as s2k−3s3−2ks2k−3 = s2k−3, as desired.

We note that Lemma 2.55 holds for any n by a similar argument, using

the generalized definition of Whitney forms given in Definition 2.46.

2.10 Generalized Barycentric Interpolation

Since we are interested in defining Whitney-like interpolation functions

for dual cochains, we first survey prior work on generalizing the Whitney 0-

forms, i.e. barycentric functions. Since there are many ways these can be

generalized, we first list all the properties we could require and then discuss

which are essential in the context of dual discretization methods.

Definition 2.56. Let T be an n-dimensional cell of the dual mesh (i.e. a

polygon in 2D or a polyhedron in 3D) with vertices v1, . . . ,vN . A set of

functions λi : T → R, i = 1, . . . , N are called barycentric coordinates on

T if they satisfy the following properties.

B1. Non-negative: λi ≥ 0.
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B2. Linear Completeness: For any linear function L : T → R,

L =
N∑

i=1

L(vi)λi.

B3. Partition of unity:
N∑

i=1

λi ≡ 1.

B4. Linear precision:
N∑

i=1

viλi(x) = x.

B5. Interpolation: λi(vj) = δij.

B6. Boundary agreement: If x lies on an edge (facet) and vi is not a

vertex of the edge (facet) then λi(x) = 0.

B7. Invariance: λi(x) = λTi (T (x)), where T : Rn → R
n is a composition of

rotation, translation, and uniform scaling transformations and {λTi } are

the corresponding functions on TT .

Remark 2.57. The invariance property B7 is included to allow estimates over

the class of convex sets with diameter one to be immediately extended to

generic sizes since translation, rotation and uniform scaling operations can

be easily passed through Sobolev norms (see Section 3.6). At the expense of

requiring uniform bounds over a class of diameter-one domains rather than

a single reference element, complications associated with handling non-affine

mappings between reference and physical elements are avoided [5].

It suffices to satisfy only properties B1, B2, B6, and B7 in order to

achieve the rest of the properties as the following proposition shows.
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Proposition 2.58. In 2D or 3D, the properties B1-B5 are related as follows:

• B2 ⇔ (B3 and B4)

• (B1 and B2) ⇒ B5

Proof. Given B2, setting L ≡ 1 implies B3 and setting L(x) = x yields B4.

For the converse, we prove the 2D case first. Assuming B3 and B4 hold and let

L(x, y) = ax+ by + c where a, b, c ∈ R are constants. Let vi have coordinates

(vx
i ,v

y
i ). Then

n∑

i=1

L(vi)λi(x, y) =
n∑

i=1

(avx
i + bvy

i + c)λi(x)

= a

(
n∑

i=1

vx
i λi(x)

)
+ b

(
n∑

i=1

vy
i λi(x)

)
+ c

(
n∑

i=1

λi(x)

)

= ax+ by + c = L(x, y).

The 3D case is similar. A proof that B1 and B2 imply B5 can be found in [95,

Section 2.4].

As we will discuss below, there are many papers on generalized barycen-

tric functions satisfying some or all of properties B1-B7. It is important to

note that the results in Chapter 4 on constructing dual Whitney-like functions

and discrete inverse Hodge stars do not depend on which definition of λi is

selected, so long as the properties are satisfied. In this context, property B6 is

essential since Corollary 2.35 requires that the value of λi at the intersection

of two elements be independent of the element used to compute it.
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To show an optimal convergence estimate, however, it is necessary to

have an estimate of ∇λi over the interior of the polygon or polytope. Such es-

timates require assumptions about the shape regularity of dual mesh elements

(see Section 2.11) and are not amenable to proof from Definition 2.56 alone.

Still, optimal convergence estimates are possible as we will prove for the Sib-

son functions, defined below. With a slight modification required for unusual

geometries, Milbradt and Pick [70] have shown these functions satisfy all the

conditions of Definition 2.56 in 2D and 3D. Further, the functions are defined

in 2D and 3D, are reasonable to implement, and are more stable against bad

geometry in 2D than the more well-known Wachspress functions. A proof of

optimal convergence estimates for other coordinate definitions, including the

Wachspress and Harmonic functions, can be found in our paper [48].

vi

Ci

vi

x

D(x)

vi

x

D(x) ∩ Ci

Figure 2.4: Geometric calculation of a Sibson coordinate. Ci is the area of
the Voronoi region associated to vertex vi inside T . D(x) is the area of the
Voronoi region associated to x if it is added to the vertex list. The quantity
D(x) ∩Ci is exactly D(x) if x = vi and decays to zero as x moves away from
vi, with value identically zero at all vertices besides vi.

We define the Sibson coordinates in 2D but the 3D case is analogous
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with volume measurements replacing area measurements. Let x be a point

inside a polyhedral cell T of a dual mesh in R62. Let P denote the set of

vertices {vi} and define

P ′ = P ∪ {x} = {v1, . . . ,vN ,x}.

We denote the Voronoi cell associated to a point p in a pointset Q by

VQ(p) := {y ∈ T : |y− p| < |y− q| , ∀q ∈ Q \ {p}} .

Note that these Voronoi cells have been restricted to T and are thus always

of finite size. We fix the notation

Ci := |VP (vi)| = |{y ∈ T : |y− vi| < |y− vj| , ∀j 6= i}|

= area of cell for vi in Voronoi diagram on the points of P ,

D(x) := |VP ′(x)| = |{y ∈ T : |y− x| < |y− vi| , ∀i}|

= area of cell for x in Voronoi diagram on the points of P ′.

By a slight abuse of notation, we also define

D(x) ∩ Ci := |VP ′(x) ∩ VP (vi)|.

The notation is shown in Figure 2.4.

Definition 2.59. The Sibson coordinate function associated to vertex vi is

λi(x) :=
D(x) ∩ Ci

D(x)
or, equivalently, λi(x) =

D(x) ∩ Ci∑N
j=1Dj(x) ∩ Cj

.

♦
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It has been shown that the Sibson functions are C∞ on T except at

the vertices vi where they are C0 and on circumcircles of Delaunay triangles

where they are C1 [84, 41]. Since the finite set of vertices are the only points

at which the function is not C1, we conclude that λi ∈ H1(Ω).

We now discuss prior work on generalized barycentric functions in 2D

and then in 3D.

2.10.1 Generalized Barycentric Interpolation in 2D

Many generalizations of barycentric functions on 2D polygons have

emerged in the literature. The Wachspress functions [91, 43] are rational

functions constructed explicitly based on the areas of certain triangles within

T . The Sibson functions [84], also called the natural neighbor or natural ele-

ment coordinates [86], are also constructed explicitly, as described above. The

Harmonic functions [95, 26] are defined as the solution to Laplace’s equation

over T with certain piecewise linear boundary data. These three types are

discussed and analyzed in detail in our paper [48].

Other generalizations include maximum entropy [85], metric [69], dis-

crete harmonic [77] and mean value coordinates [42]. Of these, the mean value

coordinates are of particular interest since they appear to have well-behaved

gradients for a large class of polygons. Additional comparisons of barycentric

functions can be found in the survey papers of Cueto et al. [28] and Sukumar

and Tabarraei [87].
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2.10.2 Generalized Barycentric Interpolation in 3D

As noted earlier, the Sibson functions [84] are defined in any dimension

and have been considered for use in finite element methods by Milbradt and

Pick [70]. The definition of Harmonic functions also holds any dimension and

thus extends to 3D, although implementing them presents a separate chal-

lenge. Approaches along these lines have been considered by Christensen [26],

Euler [39], Warren et al. [95] and Hormann and Sukumar [62]. Floater [44] has

extended mean value coordinates to 3D in the particular case of star-shaped

polyhedra with triangular facets. Warren [93] also presented an approach ex-

tending the notions of the Wachspress functions to convex polytopes in arbi-

trary dimensions, but no explicit formulation of how to compute the functions

is given.

If rational functions are desired, a result from Warren [94] shows that

the Wachspress functions are the unique, lowest degree rational barycentric

functions over polygons. Likewise, his functions in 3D [93] are the unique,

lowest degree rational barycentric functions over polytopes. For finite element

applications, however, the λi need not be rational. Moreover, as we have shown

in our paper [48], the Wachspress functions require stricter shape regularity

requirements to achieve optimal order convergence estimates than either the

Sibson or Harmonic functions. This makes them somewhat less desirable for

use in the finite element type applications considered here and explains why

we have focused on the Sibson functions.
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2.11 Generalized Shape Regularity Conditions

In this section, we discuss generalizations of shape regularity conditions

to convex 2D polygons. These will be used in Section 3.6 to prove an optimal

order convergence estimate for the Sibson functions.

Let n = 2 and let T be a 2-cell in the dual mesh, i.e. a convex polygon.

Denote the interior angle at vi ∈ T by βi. The largest distance between two

points in T (the diameter of T ) is denoted diam(T ) and the radius of the

largest inscribed circle is denoted ρ(T ). The center of this circle is denoted

c and is selected arbitrarily when no unique circle exists. The aspect ratio

(or chunkiness parameter) γ is the ratio of the diameter to the radius of the

largest inscribed circle, i.e.

γ :=
diam(T )

ρ(T )
.

We will consider the following geometric conditions.

G1. Bounded aspect ratio: There exists γ∗ ∈ R such that γ < γ∗.

G2. Minimum edge length: There exists d∗ ∈ R such that |vi − vj| >

d∗ > 0 for all i 6= j with vi,vj ∈ T .

G3. Maximum interior angle: There exists β∗ ∈ R such that βi < β∗ < π

for all i.

G4. Minimum interior angle: There exists β∗ ∈ R such that βi > β∗ > 0

for all i.

61



G5. Maximum vertex count: There exists n∗ ∈ R such that n < n∗.

For triangles, G4 and G3 are the only two important geometric restric-

tions since G5 holds trivially and G1⇔G4⇒G2. For general polygons, the

relationships between these conditions are more complicated; for example, a

polygon satisfying G1 may have vertices which are arbitrarily close to each

other and thus might not satisfy G5.

Proposition 2.61 below specifies when the first three geometric assump-

tions (G1-G3) imply the last two. To prove it, we will need the following result.

Proposition 2.60. Let |T | denote the area of a convex polygon T and |∂T |

its perimeter. If diam(T ) = 1, then

i. |T | < π/4,

ii. |∂T | ≤ π,

iii. T is contained in a ball of radius no larger than 1/
√
2, and

iv. If convex polygon Υ is contained in T , then |∂Υ| ≤ |∂T |.

The first three statements are the isodiametric inequality, a corollary

to Barbier’s theorem, and Jung’s theorem, respectively. The last statement is

a technical result along the same lines. See [37, 98, 82] for more details.

Proposition 2.61. The following implications hold.

i. G1 ⇒ G4
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ii. (G2 or G3) ⇒ G5

Proof. G1 ⇒ G4: If βi is an interior angle, then ρ(Ω) ≤ sin(βi/2) (see Fig-

ure 2.5). Thus γ > 1
sin(βi/2)

. We conclude that βi > 2 arcsin 1
γ∗
. Note that

γ∗ ≥ 2 so this is well-defined.

vi

c ρ(Ω)

Figure 2.5: Proof that G1 ⇒ G4. The upper angle in the triangle is ≤ βi/2 ≤
π/2 and the hypotenuse is ≤ diam(Ω) = 1. Thus ρ(Ω) ≤ sin(βi/2).

G2 ⇒ G5: By Jung’s theorem (Proposition 2.60(3)), there exists x ∈ Ω

such that Ω ⊂ B(x, 1/
√
2). By G2, {B(vi, d∗/2)}ni=1 is a set of disjoint balls.

Thus B(x, 1/
√
2 + d∗/2) contains all of these balls. Comparing the areas

of
⋃n

i=1B(vi, d∗/2) and B(x, 1/
√
2 + d∗/2) gives nπd2

∗

4
< π( 1√

2
+ d∗/2)

2, so

n < (
√
2+d∗)2

d2
∗

.

G3 ⇒ G5: Since Ω is convex,
∑n

i=1 βi = π(n− 2). So nβ∗ ≥ π(n− 2).

Thus n ≤ 2π
π−β∗

.
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2.12 Generalized Interpolation in Sobolev Spaces

In this section we state some classic results related to interpolation in

Sobolev spaces that will be used in the proof of discretization stability using

Sibson functions in Section 3.6.

Definition 2.62. Let n = 2 and let {vi} be the vertices of a dual mesh. Let

λi denote the Sibson coordinate function associated to vi, defined piecewise

over the dual mesh cells adjacent to vi (see Definition 2.59). Then the Sibson

dual interpolation operator is

I0 : C
0 → Λ

0
given by I0(w) :=

∑

i

w(vi)λi (2.18)

♦

For the rest of this section, we will use the abbreviated notation

I := I0P0.

This coincides with the standard notation of interpolation in the finite element

literature.

We start with the Bramble-Hilbert lemma, originally given in [22], but

stated in a modern form for the particular case of H1 estimates for convex

domains of diameter 1.

Lemma 2.63 (Bramble-Hilbert [90, 29]). Let T be a convex polygon with

diameter 1. For all u ∈ H2(T ), there exists a first order polynomial pu such

that ||u− pu||H1(T ) ≤ CBH |u|H2(T ).
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We emphasize that the constant CBH is uniform over all convex sets of

diameter 1.

Lemma 2.64. Let T be a convex polygon with diameter 1. Suppose that the

following estimate holds

||Iu||H1(T ) ≤ CI ||u||H2(T ) , ∀u ∈ H1(T ) (2.19)

Then for all u ∈ H2(T ),

||u− Iu||H1(T ) ≤ (1 + CI)
√

1 + C2
BH |u|H2(T ) .

Proof. Let pu be the polynomial given in Lemma 2.63 which closely approxi-

mates u. By linear completeness of the {λi} functions, Ipu = pu, yielding the

estimate

||u− Iu||H1(T ) ≤ ||u− pu||H1(T ) + ||I(u− pu)||H1(T )

≤ (1 + CI) ||u− pu||H2(T ) ≤ (1 + CI)
√
1 + C2

BH |u|H2(T ) .

Corollary 2.65. Let diam(T ) ≤ 1. If estimate (2.19) holds, then for all

u ∈ H2(T ),

||u− Iu||H1(T ) ≤ (1 + CI)
√

1 + C2
BH diam(T ) |u|H2(T ) .

Proof. This follows from the standard scaling properties of Sobolev norms since

the invariance property B7 (see Section 2.10) allows for a change of variables

to a unit diameter domain. We remark that the L2-component of the H1-norm

satisfies a stronger estimate containing an extra power of diam(T ).
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Lemma 2.66. Under G1 and G5, estimate (2.19) holds whenever there exists

a constant Cλ such that
∣∣∣∣λi
∣∣∣∣

H1(T )
≤ Cλ. (2.20)

Proof. This follows almost immediately from the Sobolev embedding theorem;

see [2, 66]:

||Iu||H1(T ) ≤
n∑

i=1

|u(vi)| ||λi||H1(T ) ≤ n∗Cλ ||u||C0(T ) ≤ n∗CλCs ||u||H2(T ) ,

where Cs is the Sobolev embedding; i.e., ||u||C0(T ) ≤ Cs ||u||H2(T ) for all u ∈

H2(T ). The constant Cs is independent of the domain T since the boundaries

of all polygons satisfying G1 are uniformly Lipschitz [66].

Finally, we state a particular instance of the Poincaré inequality which

we will use in our proof of stability. A proof can be found in, e.g. [40]

Theorem 2.67 (Poincaré Inequality). Let Ω be a bounded domain. Then for

any u ∈ H1(Ω) with u = 0 on ∂Ω,

||u||L2 ≤ C|u|H1

for some constant C dependent on Ω but independent of u.

We close this section by noting that |u|H1 and ||∇u||[L2]3 are different

expressions for the same quantity.
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Chapter 3

Discretization Stability of Dual Methods

While DEC terminology suggests discretization approaches for many

types of PDEs, we focus in this section only on problems deriving from a

generalized problem d ∗ du = f . These problems encompass many famous

PDE problems including Poisson’s equation and a magnetostatics problem.

We begin by describing the dual discretization methodology for the generalized

problem and stating the discretization stability result.

3.1 Generic methodology

Consider the abstract problem of solving

−d ∗ du = f (3.1)

for u ∈ Λk, given f ∈ Λ
n
. For any n, the k = 0 instance of (3.1) is an exterior

calculus description of

−div grad u = f,

the standard Poisson problem. Likewise, the k = n − 1 instance of (3.1) is a

description of

−grad div u = f.
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For n = 3, the k = 1 instance of (3.1) is a description of

−curl curl ~u = ~f, (3.2)

a type of eddy-current problem and similar to the magnetostatics problem

discussed in Section 3.2.

Taking (3.1) as the result of Step I from the generic approach outlined in

Section 1.1, we linearize the problem by introducing an intermediary variable

v ∈ Λ
n−k−1

defined by

∗v := −du (3.3)

This results in the linear system

(
∗ dk

dn−k−1 0

)(
v
u

)
=

(
0
f

)
. (3.4)

The primal and dual formulations in this setting are

• u-Primal Formulation: u ∈ Λk, v ∈ Λ
n−k−1

and f ∈ Λ
n−k

• u-Dual Formulation: u ∈ Λ
k
, v ∈ Λn−k−1 and f ∈ Λn−k

In a sense, this is a false dichotomy since Λk and Λ
k
are the same space (recall

Λ
k
:= ∗Λn−k and ∗ is an isometry). However, when we apply the appropriate

primal or dual projection operators to u, v, and f we end up with distinct

discretizations and different linear systems.

• u-Primal Discretization: u ∈ Ck, v ∈ Cn−k−1
and f ∈ Cn−k

(
M

−1
k+1 Dk

D
T
k 0

)(
v

u

)
=

(
0
f

)
(3.5)
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primal
cochains

: · · · Dk−1 //�� ��
�� ��u

Dk // Ck+1
D1 // · · · Dn−k−2 //�� ��

�� ��v
Dn−k−1 //

Mn−k−1

��

Cn−k
Dn−k // · · ·

dual
cochains

: · · · Cn−k

D
T
k−1

oo �� ��
�� ��v

D
T
k

oo

M
−1

k+1

OO

· · ·
D
T
k+1

oo Ck+1

D
T
n−k−2

oo �� ��
�� ��u

D
T
n−k−1

oo · · ·
D
T
n−k

oo

Figure 3.1: Portion of a generic primal and dual cochain diagram showing
the natural duality between the variables and operators of systems (3.5) and
(3.6). Discretizations of the variables are written in place of the primal or dual
cochain spaces to which they belong.

• u-Dual Discretization: u ∈ Ck
, v ∈ Cn−k−1 and f ∈ Cn−k

(
Mn−k−1 D

T
n−k−1

Dn−k−1 0

)(
v

u

)
=

(
0
f

)
(3.6)

We show in Figure 3.1 how these two discretizations fit into a generic cochain

diagram in a natural and complementary fashion.

We now treat our DEC-inspired discretization techniques with a FEEC-

inspired analysis of convergence. A method is said to have discretization

stability if it can be shown to have an optimal convergence estimate. We

will focus on “h-estimates” which dictate how fast the error between the con-

tinuous and discrete solutions to the PDE goes to zero as the size of maximum

width domain element goes to zero.1 Since the Ik interpolants are linear, the

optimal convergence rate should be linear as well.

1Throughout this work, we use the notation md instead of the traditional h to avoid
confusion with the h variable in the magnetostatics problem.
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We now state a general conjecture about primal and dual discretization

stability and which we will prove for various problems in the case n = 3 in

subsequent sections.

Conjecture 3.1. Consider the problem (3.4) with Dirichlet or Neumann bound-

ary conditions over a contractible, compact domain Ω in R
n with primal and

dual domain meshes of a finite number of elements. Let md denote the maxi-

mum diameter of a mesh element and assume the mesh elements have bounded

aspect ratio. Let ||·||Pk
, ||·||Pn−k−1

be norms on Λk and Λn−k, respectively, such

that ||u||Pk
, ||v||Pn−k−1

< ∞ implies u and v have enough regularity for Pku

and Pn−k−1v to be well-defined.

• u-Primal Stability: Let (u,v) be a solution pair to (3.5). There exists

a constant C dependent on |Ω| and ||u||Pk
but independent of md, such

that

||Iku− u||HΛk +
∣∣∣∣∗Ik+1M

−1
k+1v− v

∣∣∣∣
HΛn−k−1 ≤ C md.

• u-Dual Stability: Let (u,v) be a solution pair to (3.6). There exists a

constant C dependent on |Ω| and ||v||Pn−k
but independent of md, such

that

||In−k−1v− v||HΛn−k−1 +
∣∣∣∣∗In−kM

−1
n−ku− u

∣∣∣∣
HΛk ≤ C md.

This implies that both primal and dual methods are stable with the optimal

order error estimate.
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3.2 Example: Magnetostatics

This section begins by casting a magnetostatics problem similar to the

generic problem (3.1) into the language of DEC. The primal stability result and

accompanying proof technique is attributed to Bossavit [18, 20]. We explain

the approach in much more detail here than is given in his work so that it can

be adapted easily to the equivalent dual formulation as well as instances of

the generic problem (3.1).

3.2.1 Magnetostatics - Continuous Problem

The magnetostatics problem is characterized by Gauss’s law for mag-

netism, a constitutive relationship, and Ampère’s law, respectively,

div b = 0, ∗b = h, curl h = j. (3.7)

Here, j is a given current density and b and h both represent the magnetic

field. It is assumed that the domain Ω is a compact, contractible 3-manifold

with boundary Γ written as a disjoint union Γe ∪ Γh such that n̂ · b = 0 on Γe

and n̂× h = 0 on Γh.

Translated to exterior calculus, the equations become

db = 0, ∗b = h, dh = j

where b and j are 2-forms, and h is a 1-form. We use b as the indicator of

primal or dual treatment since b is typically discretized as a primal 2-cochain.

Remark 3.2. Note that over contractible domains, div b = 0 means there

exists a ∈ Λ1 such that curl a = b by exactness of the deRham sequence. If
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we consider relabeling h 7→ u, a 7→ v, the magnetostatics problem has the

constraint dv = ∗u (or, equivalently, ∗dv = u) while the generic problem (3.1)

has ∗v = du. This analogy hints at why the proof techniques can be adapted.

3.2.2 Magnetostatics - Stability of Primal Discretization

Treating b as an element of Λ2, the discretization of (3.7) is

D2b = 0, M2b = h, D
T
1 h = j (3.8)

Two mixed systems similar to (3.5) and (3.6) are available to solve for a solu-

tion pair (b,h) ∈ C2 × C1
. The first is

(
−M2 D

T
2

D2 0

)(
b

p

)
=

(
−h0

0

)
. (3.9)

In this system, h0 ∈ C1
is any dual 1-cochain satisfying D

T
1 h0 = j and h is

defined by h := h0 + D
T
2 p. Thus D

T
1 h = D

T
1 (h0 + D

T
2 p) = j is assured.

The second mixed system is

(
−M

−1
2 D1

D
T
1 0

)(
h

a

)
=

(
0
j

)
. (3.10)

In this system, b is defined by b := D1a, so that D2b = D2D1a = 0. The choice

between (3.9) and (3.10) is irrelevant with regards to discretization stability

but will make a difference in regards to numerical stability (see Chapter 4).

The boundary conditions are enforced by requiring certain entries of b

and h to be zero. If ∂Ω is a subset of the primal mesh, then for any σ2
j ∈ Γe,

assign b(σ2) := 0 and for any σ2
j ∈ Γh, assign h(⋆σ2) := 0. If ∂Ω is a subset

72



of the dual mesh, then for any ⋆σ2
j ∈ Γe, assign h(⋆σ2) := 0 and for any

⋆σ2
j ∈ Γh, assign b(σ2

j ) := 0. These constraints can be incorporated into the

eventual linear system used to solve the discrete problem.

To get the desired convergence estimates, we have to assume a certain

amount of regularity on b. The typical assumption is that b lies in [H1]3 and

div b lies in H1. For readability, we define a unique norm for this context:

||b||[H1]3,H1 := ||b||[H1]3 + ||div b||H1 .

We also have to assume that the input data j is known to a high degree of

accuracy. This type of assumption is essential to any numerical method as one

cannot expect an error estimate on the solution better than the error estimate

on the input. Hence, it should suffice to assume that the error is O( md). For

simplicity, however, we assume that

j− P2j ≡ 0. (3.11)

These assumptions allow for the following stability estimate.

Theorem 3.3. Bossavit [18, 20] Let Ω be a contractible, compact domain in

R
3 with primal and dual domain meshes of a finite number of elements. Let

md denote the maximum diameter of a mesh element and assume the mesh

elements have bounded aspect ratio.. Let (b,h) be a solution pair to (3.8).

There exists a constant C dependent on ||b||[H1]3,H1 but independent of md,

such that

||I2b− b||HΛ2 +
∣∣∣∣∗I2M

−1
2 h− h

∣∣∣∣
HΛ1 ≤ C md.

This implies that the method is stable with the optimal order error estimate.
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Proof. The maps involved in proving the stability results are summarized in

the following diagram.

primal forms
�� ��
�� ��b

∗

��?
?

?

?

?

?

?

?

?

?

?

P2

��

�� ��
�� ��h

P1

��

dual forms

primal cochains �� ��
�� ��b

I2

OO

M
−1

2 ��?
?

?

?

?

?

?

?

?

?

�� ��
�� ��h

M2

__?
?

?

?

?

?

?

?

?

?

dual cochains

To simplify the presentation of the material, we will prove that

||I2b− b||2HΛ2 +
∣∣∣∣∗I2M

−1
2 h− h

∣∣∣∣2
HΛ1 ≤ C m2

d,

from which the theorem follows.

||I2b− b||2HΛ2 +
∣∣∣∣∗I2M

−1
2 h− h

∣∣∣∣2
HΛ1
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≤ ||I2b− I2P2b||2HΛ2 +
∣∣∣∣∗I2M

−1
2 h− ∗I2M

−1
2 P1h

∣∣∣∣2
HΛ1

+C ||b||2[H1]3,H1 m2
d by Lemma 3.5

= ||I2(b− P2b)||2HΛ2 +
∣∣∣∣∗I2M

−1
2 (h− P1h)

∣∣∣∣2
HΛ1

+C ||b||2[H1]3,H1 m2
d by linearity

≤ 1

α2

(
||b− P2b||2C2 +

∣∣∣∣h− P1h
∣∣∣∣2
C1

)
+ C ||b||2[H1]3,H1 m2

d by Lemma 3.7

=
1

α2

∣∣∣∣(M2P2 − P1∗)b
∣∣∣∣2
C1 + C ||b||2[H1]3,H1 m2

d by Lemma 3.8

≤ C ||b||[H1]3,H1

(
||b||[H1]3,H1 |Ω|+ 1

)
m2

d by Lemma 3.9

Note that per convention, the C value in the last step may not be the same

as in previous steps. The largest C value required for any of the steps suffices

as a general constant.

We first need a technical lemma related to our regularity assumption.

Lemma 3.4. Under the assumptions of Theorem 3.3, for any 2-simplex σ2
i ∈

C2, ∣∣∣∣∣
|σ2

i |
|⋆σ2

i |

(∫

⋆σ2
i

φ∗(∗b)
)

−
∫

σ2
i

φ∗b

∣∣∣∣∣ ≤ ||b||[H1]3,H1 |σ2
i | md

Proof. Without loss of generality, fix a 2D coordinate system x for ⋆σ2
i and a

1D coordinate system y for σ2
i with origin z = σ2

i ∩⋆σ2
i as shown in Figure 3.2.

Since σ2
i and ⋆σ2

i are orthogonal, we can write b in coordinates as

b(x)dx := φ∗(∗b) and b(y)dy := φ∗b
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σ2
i ⋆σ2

i

z

Figure 3.2: In n = 3, a primal 2-simplex σ2
i and its orthogonal dual edge ⋆σ2

i

intersecting at point z.

We then have that

|σ2
i |

|⋆σ2
i |

(∫

⋆σ2
i

φ∗(∗b)
)

−
∫

σ2
i

φ∗b

=
|σ2

i |
|⋆σ2

i |

(∫

⋆σ2
i

b(x)− b(z) + b(z)dx

)
−
∫

σ2
i

b(y)dy

≤ |σ2
i |

|⋆σ2
i |

∫

⋆σ2
i

||b||[H1]3,H1 |x− z|dx+ |σ2
i |b(z)−

∫

σ2
i

b(y)dy

≤ |σ2
i |

|⋆σ2
i |

∫

⋆σ2
i

||b||[H1]3,H1 |x− z|dx+
∫

σ2
i

||b||[H1]3,H1 |z− y|dy

≤ |σ2
i | ||b||[H1]3,H1 diam(⋆σ2

i ) + |σ2
i | ||b||[H1]3,H1 diam(σ2

i )

≤ ||b||[H1]3,H1 |σ2
i | md

Lemma 3.5. Under the assumptions of Theorem 3.3, there exists a constant

C such that

||b− I2P2b||HΛ2 ≤ C md ||b||[H1]3,H1 (3.12)

∣∣∣∣h− ∗I2M
−1
2 P1h

∣∣∣∣
HΛ1 ≤ C md ||b||[H1]3,H1 (3.13)
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Proof. Note that (3.12) is the result of Theorem 2.50 for k = 2. For (3.13),

we have that

∣∣∣∣h− ∗I2M
−1
2 P1h

∣∣∣∣
HΛ1 =

∣∣∣∣∣∣

∣∣∣∣∣∣
h− ∗

∑

σ2
i ∈C2

|σ2
i |

| ⋆ σ2
i |

(∫

⋆σ2
i

φ∗h

)
Wσ2

i

∣∣∣∣∣∣

∣∣∣∣∣∣
HΛ1

Since ∗∗ is the identity, we factor out ∗ (which changes the norm to HΛ2) and

write the integrand in terms of b. This yields

· · · =

∣∣∣∣∣∣

∣∣∣∣∣∣
b−

∑

σ2
i ∈C2

|σ2
i |

| ⋆ σ2
i |

(∫

⋆σ2
i

φ∗(∗b)
)
Wσ2

i

∣∣∣∣∣∣

∣∣∣∣∣∣
HΛ2

We now add and subtract (
∫
σ2
i

φ∗b)Wσ2
i
inside the summation so that we can

apply Lemma 3.4 and use our result from (3.12):

· · · =

∣∣∣∣∣∣

∣∣∣∣∣∣
b−

∑

σ2
i ∈C2

(∫

σ2
i

φ∗b

)
Wσ2

i

−
∑

σ2
i ∈C2

(
|σ2

i |
|⋆σ2

i |

∫

⋆σ2
i

φ∗(∗b)−
∫

σ2
i

φ∗b

)
Wσ2

i

∣∣∣∣∣∣

∣∣∣∣∣∣
HΛ2

≤ C md ||b||[H1]3,H1 +

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

σ2
i ∈C2

||b||[H1]3,H1 |σ2
i | mdWσ2

i

∣∣∣∣∣∣

∣∣∣∣∣∣
HΛ2

≤ C md ||b||[H1]3,H1 + ||b||[H1]3,H1 md

∑

σ2
i ∈C2

|σ2
i |
∣∣∣
∣∣∣Wσ2

i

∣∣∣
∣∣∣
HΛ2

To bound the summation on the right, we observe that the Wσ2
i
functions have

compact support (recall property W5 from Section 2.6). Hence, the summation

is bounded by a constant depending only on |Ω|, from which we conclude

∣∣∣∣h− ∗I2M
−1
2 P1h

∣∣∣∣
HΛ1 ≤ C md ||b||[H1]3,H1
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Remark 3.6. The last step in the previous proof says that IkPk is bounded in

operator norm. Related results can be found in many other contexts, including

Bossavit’s computation of integrals of Whitney forms [19], and bounds on

interpolation error from finite element theory, e.g. [23, Section 4.4] and [7].

Lemma 3.7. Under the assumptions of Theorem 3.3, there exists a constant

α > 0 independent of md such that

α||I2(b− P2b)||HΛ2 ≤ ||b− P2b||C2 , (3.14)

α
∣∣∣∣∗I2M

−1
2 (h− P1h)

∣∣∣∣
HΛ1 ≤

∣∣∣∣h− P1h
∣∣∣∣
C1 (3.15)

Proof. Observe that dI2(b−P2b) = I3D2(b−P2b) = −I3D2P2b and D2P2b =

P3db = 0, by Theorem 2.48i and ii. This gives us

||I2(b− P2b)||HΛ2 = ||I2(b− P2b)||[L2]3+||dI2(b− P2b)||L2 = ||I2(b− P2b)||[L2]3 .

Hence, it suffices to prove (3.14) with the [L2]3 norm on the left side.

Similarly, by Theorem 2.48iii and iv, we have that d∗I2M
−1
2 (h−P1h) =

(∗I1M
−1
1 )DT

1 (h−P1h) and D
T
1 h−D

T
1P1h = j−P2j. The quantity j−P2j is

zero since we assume (3.11). This yields

∣∣∣∣∗I2M
−1
2 (h− P1h)

∣∣∣∣
HΛ1 =

∣∣∣∣∗I2M
−1
2 (h− P1h)

∣∣∣∣
[L2]3

+
∣∣∣∣d ∗ I2M

−1
2 (h− P1h)

∣∣∣∣
[L2]3

=
∣∣∣∣∗I2M

−1
2 (h− P1h)

∣∣∣∣
[L2]3

.
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Hence, it suffices to prove (3.15) with the [L2]3 norm on the left side.

Let a ∈ C2 and recall Lemma 2.55. A binomial expansion gives the

equality

||I2a||2[L2]3 =

∫

Ω

∣∣∣∣∣∣
∑

σ2
i ∈C2

a(σ2
i )Wσ2

i

∣∣∣∣∣∣

2

=< a,MWhit
2 a >=: Q2(a).

Hence Lemma 2.55 and the bounded aspect ratio assumption allow us to con-

clude that there exists a uniform bound

||b− P2b||2C2

||I2(b− P2b)||2[L2]3

≥ α2,

for some constant α > 0 dependent on the element shape quality parameters

but not the size or orientation of the element.

The proof for (3.15) is nearly the same once we parse the notation.

Note that ∗I2 means ∗ 2(I2) which by Lemma 2.18 is the same as 1(I2). We

observe that ||1(I2)||[L2]3 = ||2(I2)||[L2]3 since the components of the vector

proxies for 1(I2) and
2(I2) are the same. Therefore

∣∣∣∣∗I2M
−1
2 (h− P1h)

∣∣∣∣2
[L2]3

= Q2(M
−1
2 (h− P1h))

Again by Lemma 2.55, we have a uniform bound
∣∣∣∣h− P1h

∣∣∣∣2
C1

∣∣∣∣∗I2M
−1
2 (h− P1h)

∣∣∣∣2
[L2]3

≥ α2,

for some α with the same dependencies as the primal case.

Lemma 3.8. Under the assumptions of Theorem 3.3,

||b− P2b||2C2 +
∣∣∣∣h− P1h

∣∣∣∣2
C1 =

∣∣∣∣(M2P2 − P1∗)b
∣∣∣∣2
C1 (3.16)
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Proof. First we show that the right side equals the left side plus an additional

term involving the discrete inner product. We then show that this inner prod-

uct is zero, yielding the result.

∣∣∣∣(M2P2 − P1∗)b
∣∣∣∣2

C1

=
〈
(M2P2 − P1∗)b,M−1

2 ((M2P2 − P1∗)b)
〉

by Definition 2.54

=
〈
M2P2b−M2b,M

−1
2 (M2P2b−M2b)

〉

+
〈
M2b− P1 ∗ b,M−1

2 (M2b− P1 ∗ b)
〉

+
〈
M2P2b−M2b,M

−1
2 (M2b− P1 ∗ b)

〉

+
〈
M2b− P1 ∗ b,M−1

2 (M2P2b−M2b)
〉

by adding ±M2b

= 〈M2(P2b− b),P2b− b)〉

+
∣∣∣∣h− P1 ∗ b

∣∣∣∣2
C1

+
〈
M2(P2b− b),b−M

−1
2 P1 ∗ b

〉

+
〈
h− P1 ∗ b,P2b− b)

〉
since h := M2b

= ||b− P2b||2C2 +
∣∣∣∣h− P1h

∣∣∣∣2
C1 − 2

〈
b− P2b,h− P1h)

〉
since h := ∗b

It thus suffices to show that

〈
b− P2b,h− P1h

〉
= 0. (3.17)

Observe that

D2(b− P2b) = −D2P2b = −P3db = 0,
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by the enforcement of the discrete equation D2b = 0, Theorem 2.48i, and

the continuous equation. By exactness, there exists A ∈ C1 such that D1a =

b− P2b. Using Lemma 2.53, we have that

〈
b− P2b,h− P1h

〉
=
〈
D1a,h− P1h

〉
=
〈
A,DT

1 (h− P1h)
〉
=
〈
A, j− D

T
1P1h

〉

By Theorem 2.48iii and the continuous equation dh = j, the right entry

becomes j − P2j. Since we assume (3.11), this entry is zero and the entire

inner product is zero, as desired.

Lemma 3.9. Under the assumptions of Theorem 3.3,

∣∣∣∣(M2P2 − P1∗)b
∣∣∣∣

C1 ≤ ||b||2[H1]3,H1 |Ω| md (3.18)

Proof. We write out the left side explicitly to derive the estimate.

∣∣∣∣(M2P2 − P1∗)b
∣∣∣∣

C1

=
∑

σ2
i ∈C2

|σ2
i |

|⋆σ2
i |

(
|⋆σ2

i |
|σ2

i |

∫

σ2
i

φ∗b−
∫

⋆σ2
i

φ∗(∗b)
)2

by definition

=
∑

σ2
i ∈C2

|⋆σ2
i |

|σ2
i |

(∫

σ2
i

φ∗b− |σ2
i |

|⋆σ2
i |

∫

⋆σ2
i

φ∗(∗b)
)2

≤
∑

σ2
i ∈C2

|⋆σ2
i |

|σ2
i |

||b||2[H1]3,H1 |σ2
i |2 md by Lemma 3.4

≤ ||b||2[H1]3,H1 |Ω| md
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∗

P1 P1

M1

M
−1
1

primal dual

continuous

discrete

Figure 3.3: This diagram in 2D shows the relations between the projection
and Hodge star operators. The dots indicate where degrees of freedom are
assigned in the case of k = 1, n = 2, i.e. primal and dual mesh edges. All the
discretization stability proofs rely on an estimate of MP −P∗ or M−1P −P∗
in an appropriate norm.

3.2.3 Magnetostatics - Stability of Dual Discretization

The crucial estimate in the primal discretization case was the estimate

(3.18) of M2P2 − P1∗. As Figure 3.3 suggests, an analagous estimate should

hold for M−1
2 P2 −P1∗. This estimate will be used to prove the discretization

stability of the dual formulation, namely, treating b as an element of Λ
2
. The

discretization of (3.7) becomes

D
T
0 b = 0, b = M1h, D1h = j. (3.19)
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Again, two mixed systems are available to solve for a solution pair is (b,h) ∈

C2 × C1. The first is

(
−M

−1
1 D0

D
T
0 0

)(
b

p

)
=

(
−h0

0

)
. (3.20)

In this system, h0 ∈ C1 is any primal 1-cochain satisfying D1h0 = j and h is

defined by h := M
−1
1 b. Thus D1h = D1(h0 +D0p) = j is assured. The second

is (
−M1 D

T
1

D1 0

)(
h

a

)
=

(
0
j

)
, (3.21)

where b is defined by b := D
T
1 a so that DT

0 b = D
T
0D

T
1 a = 0. As in the primal

case, the choice between (3.20) and (3.21) only makes a difference in regards

to numerical stability (see Chapter 4).

The boundary conditions can be enforced in an analogous fashion to

the primal case. Our estimates will be cast in terms of an energy on h. We

define the norm

||h||[H1]3,[H1]3 := ||h||[H1]3 + ||curl h||[H1]3 .

As in the primal case, we also assume that the input current density j is

approximated exactly, i.e.

j− P2j ≡ 0. (3.22)

We then have the same type of stability estimate as in the primal case.

Theorem 3.10. Let Ω be a contractible, compact domain in R
3 with primal

and dual domain meshes of a finite number of elements. Let md denote the
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maximum diameter of a mesh element and assume the mesh elements have

bounded aspect ratio. Let (b,h) be a solution pair to (3.19). There exists a

constant C dependent on ||h||[H1]3,[H1]3 but independent of md such that

||I1h− h||HΛ1 +
∣∣∣∣∗I1M

−1
1 b− b

∣∣∣∣
HΛ2 ≤ C md.

This implies that the method is stable with the optimal order error estimate.

Proof. The proof technique is similar to that of the primal-formulated problem.

||I1h− h||2HΛ1 +
∣∣∣∣∗I1M

−1
1 b− b

∣∣∣∣2
HΛ2

≤ ||I1h− I1P1h||2HΛ1 +
∣∣∣∣∗I1M

−1
1 b− ∗I1M

−1
1 P2b

∣∣∣∣2
HΛ2

+C ||h||2[H1]3,[H1]3 m2
d by Lemma 3.12

= ||I1(h− P1h)||2HΛ1 +
∣∣∣∣∗I1M

−1
1 (b− P2b)

∣∣∣∣2
HΛ2

+C ||h||2[H1]3,[H1]3 m2
d by linearity

≤ 1

α2

(
||h− P1h||2C1 +

∣∣∣∣b− P2b
∣∣∣∣2
C2

)
+ C ||h||2[H1]3,[H1]3 m2

d by Lemma 3.13

=
1

α2

∣∣∣∣(M1P1 − P2∗)h
∣∣∣∣2
C2 + C ||h||2[H1]3,[H1]3 m2

d by Lemma 3.14

≤ C ||h||[H1]3,[H1]3

(
||h||[H1]3,[H1]3 |Ω|+ 1

)
m2

d by Lemma 3.15

We need a corresponding technical lemma for the regularity assumption

on h.
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σ1
i

⋆σ1
i

z

Figure 3.4: In n = 3, a primal 1-simplex σ1
i and its orthogonal dual face ⋆σ1

i

intersecting at point z.

Lemma 3.11. Under the assumptions of Theorem 3.10, for any σ1
i ∈ C1,

∣∣∣∣∣
|σ1

i |
|⋆σ1

i |

(∫

⋆σ1
i

φ∗(∗h)
)

−
∫

σ1
i

φ∗h

∣∣∣∣∣ ≤ ||h||[H1]3,[H1]3 |σ1
i | md

The proof is analogous to that of Lemma 3.4 by using coordinate sys-

tems for σ1
i and ⋆σ1

i , as shown in Figure 3.4.

Lemma 3.12. Under the assumptions of Theorem 3.10, there exists a constant

C such that

||h− I1P1h||HΛ1 ≤ C md ||h||[H1]3,[H1]3 (3.23)

∣∣∣∣b− ∗I1M
−1
1 P2b

∣∣∣∣
HΛ2 ≤ C md ||h||[H1]3,[H1]3 (3.24)

Note that (3.13) is the result of Theorem 2.50 for k = 1. The rest of

the proof is analogous to that of Lemma 3.5.

Lemma 3.13. Under the assumptions of Theorem 3.10, there exists a constant

α > 0 independent of md such that

α||I1(h− P1h)||HΛ1 ≤ ||h− P1h||C1 , (3.25)

α
∣∣∣∣∗I1M

−1
1 (b− P2b)

∣∣∣∣
HΛ2 ≤

∣∣∣∣b− P2b
∣∣∣∣
C2 (3.26)
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The proof is analogous to that of Lemma 3.7.

Lemma 3.14. Under the assumptions of Theorem 3.10,

||h− P1h||2C1 +
∣∣∣∣b− P2b

∣∣∣∣2
C2 =

∣∣∣∣(M1P1 − P2∗)h
∣∣∣∣2
C2 (3.27)

The proof is analogous to that of Lemma 3.8

Lemma 3.15. Under the assumptions of Theorem 3.10,

∣∣∣∣(M1P1 − P2∗)h
∣∣∣∣

C2 ≤ ||h||2[H1]3,[H1]3 |Ω| md

The proof is analogous to that of Lemma 3.9

Remark 3.16. It is worth noting that this ‘dual’ approach to discretizing the

magnetostatics problem has been considered before. The thesis work of M.

Barton [10] (described in [11]) gave some theoretical and practical justifica-

tion for the approach and modern papers in electrical engineering still point

to [11] as a seminal work. Bossavit gives additional theoretical analysis and

justification in [17, Chapter 6].

Our purpose in revisiting the topic here is to show how this dual for-

mulation can be treated in a generic and unified way with the terminology of

DEC, suggesting how a similar treatment can be applied to other PDE prob-

lems. Moreover, the proof of the dual stability theorem is almost identical to

the primal stability proof in our generalized language. ♦
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3.3 Example: Poisson Equation

3.3.1 Poisson Equation - Continuous Problem

We now look at how similar techniques can be applied to a classical

PDE problem: Poisson’s equation. With Dirichlet boundary conditions, the

problem is {
∆u = f in Ω
u = 0 on ∂Ω

(3.28)

We consider solving for u given f over a compact, contractible 3-manifold

Ω embedded in R
3 with boundary denoted Γ := ∂Ω. Translated to exterior

calculus, the equation over Ω becomes

d ∗ du = f

where u is a 0-form and f is a (dual) 3-form.2 To write this equation as a

linear system, we introduce an auxiliary variable s and solve

∗du = s,
ds = f.

(3.29)

We now examine the primal and dual discretizations of (3.29) and their sta-

bility properties.

3.3.2 Poisson Equation - Stability of Primal Discretization

Treating u as an element of Λ0, the discretization of (3.29) is

M1D0u = s, D
T
0 s = f. (3.30)

2We note that, formally, the equation is (δd + dδ)u = f where f is treated as a 0-form,
but our treatment here is equivalent and simpler for exposition.
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Thus a solution pair is (u, s) ∈ C0×C2
. In this case, the general linear system

(3.5) is written (
M

−1
1 D0

D
T
0 0

)(
s

u

)
=

(
0
f

)
(3.31)

Our DEC treatment reveals, by analogy to the magnetostatics problem, an

equivalent linear system,

(
M1 D

T
1

D1 0

)(
q

g

)
=

(
s0
0

)
. (3.32)

In this system, s0 is any dual cochain satisfying D
T
0 s0 = f and s is defined

by s := M1q. The first equation implies D
T
0 s = D

T
0 (s0 − D

T
1 g) = f, since

D
T
0D

T
1 = 0. By exactness of the discrete primal cochain sequence, D1q = 0

implies that there exists a unique u ∈ C0 such that D0u = q; the uniqueness

of u comes from enforcement of the boundary conditions. Hence s = M1D0u

and the same solution pair (u, s) is recovered. As before, the choice between

(3.31) and (3.32) only makes a difference in regards to numerical stability (see

Chapter 4).

We assume that u ∈ H1 and ∇u ∈ [H1]3. For readability, we define the

norm:

||u||H1,[H1]3 := ||u||H1 + ||∇u||[H1]3

We assume the domain boundary Γ is a collection of primal mesh faces and

incorporate the constraints u(σ0) := 0 for σ0 ⊂ Γ. We also assume the input

data is known exactly, i.e.

f− P3f ≡ 0. (3.33)

The stability result is as follows.
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Theorem 3.17. Let Ω be a contractible, compact domain in R
3 with primal

and dual domain meshes of a finite number of elements. Let md denote the

maximum diameter of a mesh element and assume the mesh elements have

bounded aspect ratio. Let (u, s) be a solution pair to (3.30). There exists a

constant C dependent on ||u||H1,[H1]3 but independent of md, such that

||I0u− u||HΛ0 +
∣∣∣∣∗I1M

−1
1 s− s

∣∣∣∣
HΛ2 ≤ C md.

This implies that the method is stable with the optimal order error estimate.

Proof. The maps involved in proving the stability results are summarized in

the following diagram.

primal forms �� ���� ��u d //

P0

��

Λ1

∗

��?
?

?

?

?

?

?

?

?

?

P1

��

�� ��
�� ��f

P3

��

�� ���� ��s
d

oo

P2

��

dual forms

primal cochains �� ��
�� ��u

D0 // C1

M
−1

2 ��?
?

?

?

?

?

?

?

?

?

�� ��
�� ��f

�� ��
�� ��s

M1

__?
?

?

?

?

?

?

?

?

?

D
T
0

oo dual cochains

To simplify the presentation of the material, we will prove that

||I0u− u||2HΛ0 +
∣∣∣∣∗I1M

−1
1 s− s

∣∣∣∣2
HΛ2 ≤ C m2

d,

from which the theorem follows.
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||I0u− u||2HΛ0 +
∣∣∣∣∗I1M

−1
1 s− s

∣∣∣∣2
HΛ2

≤ ||I0u− I0P0u||2HΛ0 +
∣∣∣∣∗I1M

−1
1 s− ∗I1M

−1
1 P2s

∣∣∣∣2
HΛ2

+C ||u||2H1,[H1]3 m2
d by Lemma 3.19

= ||I0(u− P0u)||2HΛ0 +
∣∣∣∣∗I1M

−1
1 (s− P2s)

∣∣∣∣2
HΛ2

+C ||u||2H1,[H1]3 m2
d by linearity

≤ 1

α2

(
||D0(u− P0u)||2C1 +

∣∣∣∣s− P2s
∣∣∣∣2
C2

)

+C ||u||2H1,[H1]3 m2
d by Lemma 3.20

=
1

α2

∣∣∣∣(P1 ∗ −M
−1
1 P2)s

∣∣∣∣2
C1 + C ||u||2H1,[H1]3 m2

d by Lemma 3.21

≤ C ||u||H1,[H1]3

(
||u||H1,[H1]3 |Ω|+ 1

)
m2

d by Lemma 3.22

We first need a technical lemma related to our regularity assumption.

Lemma 3.18. Under the assumptions of Theorem 3.17, for any 2-simplex

σ2
i ∈ C2,

∣∣∣∣∣
|σ1

i |
|⋆σ1

i |

(∫

⋆σ1
i

φ∗(∗du)
)

−
∫

σ1
i

φ∗(du)

∣∣∣∣∣ ≤ ||u||H1,[H1]3 |σ1
i | md

Proof. Observe that ddu = 0 implies ||du||[H1]3,[H1]3 = ||du||[H1]3 ≤ ||u||H1,[H1]3 .

Hence, the proof is identical to that of Lemma 3.11, with h replaced by du.

90



Lemma 3.19. Under the assumptions of Theorem 3.17, there exists a constant

C such that

||u− I0P0u||HΛ0 ≤ C md ||u||H1,[H1]3 (3.34)

∣∣∣∣s− ∗I1M
−1
1 P2s

∣∣∣∣
HΛ1 ≤ C md ||u||H1,[H1]3 (3.35)

Proof. First note that (3.34) holds by Theorem 2.50 for k = 0. By the same

theorem for k = 1, we have that

||du− I1P1du||HΛ1 ≤ C md ||du||[H1]3,[H1]3 ≤ C md ||u||H1,[H1]3 (3.36)

since ddu = 0 implies ||du||[H1]3,[H1]3 = ||du||[H1]3 ≤ ||u||H1,[H1]3 . Thus, the

proof of (3.35) proceeds exactly as the proof of (3.24) from Lemma 3.12 by

replacing h by du and b by s.

Lemma 3.20. Under the assumptions of Theorem 3.17, there exists a constant

α > 0 independent of md such that

α||I0(u− P0u)||HΛ0 ≤ ||D0(u− P0u)||C1 , (3.37)

α
∣∣∣∣∗I1M

−1
1 (s− P2s)

∣∣∣∣
HΛ2 ≤

∣∣∣∣s− P2s
∣∣∣∣
C2 (3.38)

Proof. The subtle difference between this proof and its counterparts from the

magnetostatics examples is that the two variables involved (u and s) are not

related just by a ∗ relation. However, we can use the Poincaré Inequality to

bound u in terms of its gradient ∇u (= du) and proceed in a similar fashion.

For (3.37), we have

||I0(u− P0u)||HΛ0 = ||I0(u− P0u)||L2 + ||dI0(u− P0u)||[L2]3
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by the definition of ||·||HΛ0 . Observe that u and u are both identically zero

on ∂Ω and hence I0(u − P0u) = 0 on ∂Ω, as well.3 Thus, by the Poincaré

inequality (Theorem 2.67), we have

||I0(u− P0u)||HΛ0 ≤ (C + 1)||dI0(u− P0u)||[L2]3

By the commutativity of d and I (Theorem 2.48ii), we have

||I0(u− P0u)||HΛ0 ≤ (C + 1)||I1D0(u− P0u)||[L2]3

The proof is now analogous to that of Lemma 3.7; we use the nice refinement

assumption and Lemma 2.55 to conclude that

||D0(u− P0u)||2C1

||I1D0(u− P0u)||2[L2]3

≥ α2,

for some constant α > 0 dependent on the element shape quality parameters

but not the size or orientation of the element. The proof for (3.38) is analogous

to that of Lemma 3.7

Lemma 3.21. Under the assumptions of Theorem 3.17,

||D0(u− P0u)||2C1 +
∣∣∣∣s− P2s

∣∣∣∣2
C2 =

∣∣∣∣(P1 ∗ −M
−1
1 P2)s

∣∣∣∣2
C1 (3.39)

The proof is analogous to that of Lemma 3.8

Lemma 3.22. Under the assumptions of Theorem 3.17,

∣∣∣∣(P1 ∗ −M
−1
1 P2)s

∣∣∣∣
C1 ≤ ||u||2H1,[H1]3 |Ω| md

The proof is analogous to that of Lemma 3.9.

3Note that even if non-Dirichlet boundary conditions were used, we can proceed so long
as we can assume that u = P0u on ∂Ω.
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3.3.3 Poisson Equation - Stability of Dual Discretization

Treating u as an element of Λ
0
, the discretization of (3.29) is

M
−1
2 D

T
2 u = s, D2s = f. (3.40)

Thus a solution pair is (u, s) ∈ C0 × C2. The general linear system (3.6) is

written (
M2 D

T
2

D2 0

)(
s

u

)
=

(
0
f

)
(3.41)

Again, we have an equivalent linear system,

(
−M

−1
2 D1

D
T
1 0

)(
q

g

)
=

(
−s0
0

)
. (3.42)

where s0 ∈ C2 is a primal 2-cochain satisfying D2s0 = f and u is a solution to

D
T
2 u = −q. Define s := M

−1
2 q so that D2s = D2(M

−1
2 q) = D2(s0 + D1g) = f.

As before, the choice between (3.41) and (3.42) only makes a difference in

regards to numerical stability (see Chapter 4).

We assume that s ∈ [H1]3 and div s ∈ H1. We assume the domain

boundary Γ is a collection of dual mesh faces and incorporate the constraints

u(⋆σ3) := 0 for ⋆σ3 ⊂ Γ. We also assume the input data is known exactly, i.e.

f− P3f ≡ 0. (3.43)

The stability result is as follows.

Theorem 3.23. Let Ω be a contractible, compact domain in R
3 with primal

and dual domain meshes of a finite number of elements. Let md denote
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the maximum diameter of a mesh element and assume that we have a nice

refinement technique. Let (u, s) be a solution pair to (3.40). There exists a

constant C dependent on ||u||H1,[H1]3 but independent of md, such that

∣∣∣∣∗I3M
−1
3 u− u

∣∣∣∣
HΛ0 + ||I2s− s||HΛ2 ≤ C md.

This implies that the method is stable with the optimal order error estimate.

Proof. The proof is very similar to the previous stability proofs, differing only

in the first step. Observe that u = u = 0 on Γ so the Poincaré inequality

(Theorem 2.67) implies

∣∣∣∣∗I3M
−1
3 u− u

∣∣∣∣
HΛ0 ≤ C

∣∣∣∣∇(∗I3M
−1
3 u− u)

∣∣∣∣
[L2]3

By Theorem 2.48(iv) and the interpretation of ∇ as d0, we can equate

∣∣∣∣∇(∗I3M
−1
3 u− u)

∣∣∣∣
[L2]3

=
∣∣∣∣∗I2M

−1
2 D

T
2 u− du

∣∣∣∣
[L2]3

The claim is now almost identical to the magnetostatics primal stability result

by the identifications

s→ b, s → b, du→ h, D
T
2 u → h.

There is a small difference in that we have D2s = f instead of D2b = 0 and we

have DT
1 (D

T
2 u) = 0 instead of DT

1 h = j. However, these differences only matter

in two places in the proof which we can easily dispatch. First, in the beginning

of Lemma 3.7, our assumption that f−P3f = 0 lets us reduce the HΛ2 norm
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to an [L2]3 norm (instead of it being immediate from the equations). Second,

to prove equation (3.17), we use the fact that

h− P1h = D
T
2 u− P1du = D

T
2 (u− P0u)

and proceed using Lemma 2.53 in the same manner. Therefore, the proof goes

through in exactly the same way.

3.4 Example: Darcy Flow

We now consider a simplified Darcy flow problem which has previously

been considered as an application of DEC theory by Hirani et al. [58, 60].

Under the assumption of no external body force, the problem on Ω ⊂ R
3 is





f +
k

µ
∇p = 0 in Ω,

div f = φ in Ω,
f · n̂ = ψ on ∂Ω,

(3.44)

The goal is to solve for volumetric flux f and pressure p given φ and ψ satisfying

the compatibility condition
∫
Ω
φdΩ =

∫
∂Ω
ψdΓ. We assume for simplicity of

presentation that the ratio k/µ of permeability to viscosity is 1.

We take p ∈ Λ0 and f ∈ Λ2 since they are operated on by grad = d0

and div = d2, respectively. The first equation requires a Hodge star for the

summation to make sense, yielding the system

f + ∗dp = 0,
df = φ.

(3.45)

By the correspondence f 7→ s and p 7→ u, we can recognize (3.45) as the

Poisson problem (3.29) with Neumann instead of Dirichlet boundary condi-
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tions. This problem does not have a unique solution unless some additional

constraint is imposed, e.g. partial Dirichlet boundary data. With such a con-

straint, a Poincaré estimate still holds for p (the analogue of u) and hence all

our analysis from Section 3.3 carries over to this problem.

The method proposed by Hirani et al. [58, 60] gives a primal discretiza-

tion of f as f ∈ C2 and a dual discretization of p as p ∈ C0
. Thus, their

approach is the same as the dual discretization of the mixed Poisson equa-

tion presented in Section 3.3.3 and achieves the same stability estimates. Our

methodology thus reveals an alternate discretization, namely, f as f ∈ C2
and

p as p ∈ C0, with stability guaranteed by the analysis in Section 3.3.2.

The important message from this example is the evident arbitrariness

of ‘primal’ and ‘dual’ monikers. While a primal discretization of u was the first

consideration when discretizing Poisson’s equation, a primal discretization of v

was the first consideration when discretizing the Darcy flow equation. This, we

contend, provides evidence that the toolkit of DEC will be useful in identifying

alternative discretization methods for many PDEs beyond those considered in

this thesis.

3.5 Discretization Stability with the Whitney Hodge
Star

It is almost possible to claim that the linear systems presented thus

far maintain their discretization stability results if Mk is replaced with M
Whit
k ,

mutatis mutandis. As we have discussed in Remark 2.52, this type of change
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Λk ∗ //
Λ

n−k

Pn−k

��

Ck
Mk //

Ik

OO

Cn−k

Figure 3.5: Certain maps between cochain and form spaces are shown, in-
dicating how definitions of the discrete Hodge star Mk can be motivated as
approximations to the composed map Pn−k ∗ Ik.

is typically accompanied by a switch from circumcentric to barycentric dual

meshes. In this case, it has been shown by Bossavit [19] that the analogues

of all the Lemmas in Section 3.2.2 hold and hence Theorem 3.3 holds as well.

Thus, the all the subsequent examples depending on the primal magnetostatics

proof hold as well. The end result of such analysis is a fact already well known

in the finite element community, namely, that the appropriate use of Whitney

elements produces stable mixed methods [24, 7].

Rather than reproving these well-known results in a lengthy exposition,

we will show how the definitions of Mk and M
Whit
k can be seen as different

attempts at discretizing the composed map Pn−k ∗ Ik as shown in Figure 3.5.

This will shed light on why two seemingly unrelated operator discretizations

can both result in stable methodologies. It will also motivate why the inverse

discrete Hodge star we define in Section 4.2 should be a good proxy for the

inverse of either of either Mk or MWhit
k .

First we define an approximation of Pn−k which we will call Pg

n−k where

the g is meant to stand for ‘geometric.’ Definition 2.45 tells us that evaluating

Pn−k ∗u for some u ∈ Λk requires the computation of integrals of ∗u over each
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dual n−k cell in the mesh. Finding a closed form expression of these integrals

for arbitrary u and arbitrary mesh geometry is implausible. If u is reasonably

smooth, however, we can estimate the integrals by assuming

1

| ⋆ σk
i |

∫

⋆σk
i

φ∗(∗u) ≈ 1

|σk
i |

∫

σk
i

φ∗u,

i.e. that ∗u has the same average value over ⋆σk
i that u has over σk

i . Thus, we

define

Pg
n−k ∗ u :=

{
| ⋆ σk

i |
|σk

i |

∫

σk
i

φ∗u

}

i

Observe that for u ∈ Ck, the value u(σk
i ) is meant to represent the integral of

u over σk
i . Thus, we can view M

Diag
k u as

M
Diag
k u =

{ | ⋆ σk
i |

|σk
i |

u(σk
i )

}

i

= Pg

n−k ∗ Iku ≈ Pn−k ∗ Iku. (3.46)

To see MWhit
k as a similar composition, we first define an approximation of Pk

which we will call Ps
k where the s is meant to stand for ’smoothed.’ Define

Ps
k(u) :=




|σk

i |

∫
uWσk

i∫
Wσk

i





i

The integrals are over Ω. Note that Ps
k is exactly Pk on constant functions

and can be expected to give a good approximation of Pk for arbitrary u by the

properties of Whitney functions. We will make use of the geometric identity

| ⋆ σk
i | =

∫
Wσk

i
(3.47)

which holds over barycentric meshes, as was shown by Bossavit [19].
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Lemma 3.24. For any u ∈ Ck,

M
Whit
k u = Pg

n−k ∗ IkPs
kIku

Proof. The proof is a matter of picking through the definitions. Denote u(σk
j )

by uj and Wσk
j
by Wj. Observe that

Ps
kIku =





|σk
i |

∫ (∑

j

ujWj

)
Wi

∫
Wi





i

Thus,

IkPs
kIku =

∑

i



|σk

i |

∫ (∑

j

ujWj

)
Wi

∫
Wi




Wi

=
∑

i,j

∫
WiWj

∫
Wi

ui|σk
i |Wi

Hence,

Pg

n−k ∗ IkPs
kIku =




ui| ⋆ σk

i |
∑

j

∫
WiWj

∫
Wi





i

=

{∑

j

∫
WiWjui

}

i

= M
Whit
k u.

Note that this last chain of equalities used the geometric identity (3.47).
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Since Ps
kIk ≈ 1, we can use Lemma 3.24 to conclude

M
Whit
k u ≈ Pg

n−k ∗ Iku = M
Diag
k u

and thus, by (3.46), MWhit
k u ≈ Pn−k ∗ Iku, as well.

The definition of a discrete Hodge is by no means canonical and many

plausible choices for their definition may provide for discretization stability in

these types of mixed methods. In this section, however, we have seen that

the most used definitions of Mk both provide an approximation of Pn−k ∗ Ik.

Hence, this approximation property can be used as a criterion to motivate

alternate definitions of Mk and of its inverse. This will be discussed further in

Section 4.2.

3.6 Discretization Stability with Generalized Barycen-
tric Interpolation

In all of our analysis thus far, we have used the composed operator

∗In−kM
−1
n−k : C

k → Λ
k

(3.48)

as a shortcut for defining an interpolation operator on the dual cochain spaces.

This has had the advantage of allowing us to leverage many established results

on the Ik operators in our stability proofs. The drawback, however, is that

writing the operator out in a simple closed form (in preparation for subsequent

implementation in code, for instance) is rather difficult due to the presence of

the ∗ operator.
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As we will show, (3.48) is neither the only nor the optimal definition for

a dual cochain interpolation operator. We will construct explicit interpolation

operators Ik for dual k-cochains and show that they achieve the same optimal

convergence estimate. The results in this section are for I0 with n = 2, taken

from my paper [48]. A construction of Ik with n = 3 for 0 ≤ k ≤ 3 will be

given in Chapter 4.

To show a standard optimal convergence estimate for the I0 operator

with the Sibson functions, we will make use of the definitions and results given

in Sections 2.10, 2.11, and 2.12.

Theorem 3.25. Assuming conditions G1 and G2, the optimal convergence

estimate holds for I0 using the Sibson generalized barycentric interpolation

functions. That is, there exists a constant C independent of md such that

∣∣∣∣u− I0P0u
∣∣∣∣

H1(T )
≤ C diam(T )|u|H2(T ), ∀u ∈ H2(T ). (3.49)

Proof. Again, we will use the abbreviated notation

I := I0P0.

By Corollary 2.65, it suffices to prove estimate (2.19). By Lemma 2.66, it

suffices to prove (2.20). By Lemma 3.29, (2.20) holds. Hence, the rest of this

section is devoted to proving Lemma 3.29.

We begin with a technical property of domains satisfying conditions G1

and G2.
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xz
ei

ej

vi

vj

Li

Lj

h

W

θ T

Figure 3.6: Notation for proof of Proposition 3.26.

Proposition 3.26. Under G1 and G2, there exists h∗ > 0 such that for all

x ∈ T , B(x, h∗) does not intersect any three edges or any two non-adjacent

edges of T .

Proof. Let x ∈ T , h ∈ (0, d∗/2), and suppose that two disjoint edges of T , ei

and ej, intersect B(x, h). Let Li and Lj be the lines containing ei and ej and

let θ be the angle between these lines; see Figure 3.6. We first consider the

case where Li and Lj are not parallel and define z = Li ∩ Lj.

Let vi and vj be the endpoints of ei and ej nearest to z. Since h < d∗/2

both vi and vj cannot live in B(x, h); without loss of generality assume that

vi /∈ B(x, h). Since dist(vj, Li) < 2h,

sin θ < 2h/ |z− vj| . (3.50)

Let W be the sector between Li and Lj containing x. Now T ⊂

B(vj, 1)∩W ⊂ B(z, 1+|z− vj|)∩W . It follows that ρ(T ) ≤ (1+|vj − z|) sin θ.

Using (3.50) and G1,

1

γ∗
≤ 2h

|z− vj|
(1 + |z− vj|) ≤ 2h

(
1

d∗
+ 1

)
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where the final inequality holds because by G2 |z− vj| ≥ |vi − vj| ≥ d∗. Thus

h >
d∗

2γ∗(1 + d∗)
. (3.51)

Estimate (3.51) holds in the limiting case: when Li and Lj are parallel. In

this case T must be contained in a strip of width 2h which for small h violates

the aspect ratio condition.

The triangle is the only polygon with three or more pairwise non-

adjacent edges. So it remains to find a suitable h∗ so that B(x, h∗) does

not intersect all three edges of the triangle. For a triangle, ρ(T ) is the radius

of the smallest circle touching all three edges. Since under G1 ρ(T ) ≥ 1/γ∗,

B(x, 1
2γ∗

) intersects at most two edges. Thus h∗ =
d∗

2γ∗(1+d∗)
is sufficiently small

to satisfy the proposition in all cases.

Proposition 3.26 is a useful tool for proving a lower bound on D(x),

the area of the Voronoi cell of x intersected with T .

Proposition 3.27. Under G1 and G2, there exists D∗ > 0 such that D(x) >

D∗.

Proof. Let h∗ be the constant in Proposition 3.26. We consider two cases,

based on whether the point x is near any vertex of T , as shown in Figure 3.7

(left).

Case 1: There exists vi such that x ∈ B(vi, h∗/2).

Consider the sector of B(x, h∗/2) specified by segments which are par-

allel to the edges of T containing vi, as shown in Figure 3.7 (right). This
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x

vi

h∗

Figure 3.7: The proof of Proposition 3.27 has two cases based on whether x is
within h∗/2 of some vi or not. When x is within h∗/2 of vi, the shaded sector
shown on the right is contained in VP ′(x) ∩ T .

sector must be contained in T by Proposition 3.26 and in the Voronoi cell of x

by choice of h∗ < d∗. Thus by G4 (using Proposition 2.61(1)) D(x) ≥ β∗h
2
∗/8.

Case 2: For all vi, x /∈ B(vi, h∗/2).

In this case, B(x, h∗/4) ∩ T ⊂ VP ′(x). If B(x, h∗/4) intersects zero or

one boundary edge of T , thenD(x) ≥ πh2∗/32. Otherwise B(x, h∗/4) intersects

two adjacent boundary edges. By G4, D(x) ≥ β∗h
2
∗/32.

General formulas for the gradient of the area of a Voronoi cell are well-

known and can be used to bound the gradients of D(x) and D(x) ∩ Ci.

Proposition 3.28. |∇D(x)| ≤ π and |∇(D(x) ∩ Ci)| ≤ 1.

Proof. The gradient of the area of a Voronoi region is known to be

∇D(x) =
n∑

j=1

vj − x

|vj − x|Fj,
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where Fj is the length of the segment separating the Voronoi cells of x and

vj [75, 76]. Then applying Proposition 2.60 gives

|∇D(x)| ≤
n∑

i=1

Fi ≤ |∂T | ≤ π.

Similarly,

∇(D(x) ∩ Ci) =
vi − x

|vi − x|Fi,

and since Fi ≤ diam(T ), |∇(D(x) ∩ Ci)| ≤ 1.

Propositions 3.27 and 3.28 give estimates for the key terms needed to

prove (2.20), i.e. a uniform bound on the H1 norm of the λi functions.

Lemma 3.29. Under G1 and G2, (2.20) holds for the Sibson coordinates.

Proof.
∣∣∇λi

∣∣ is estimated by applying Propositions 3.27 and 3.28:

∣∣∇λi
∣∣ ≤ |∇(D(x) ∩ Ci)|

D(x)
+

(D(x) ∩ Ci) |∇D(x)|
D(x)2

≤ |∇(D(x) ∩ Ci)|+ |∇D(x)|
D(x)

≤ 1 + π

D∗
.

Integrating this estimate completes the result.

We conclude with a remark on why Theorem 3.25 implies a similar

estimate over an entire Ω. Suppose Ω is a mesh of a finite number of elements

denoted by T . Squaring both sides of (3.49) and summing over the elements

yields

∑

T

∣∣∣∣u− I0P0u
∣∣∣∣2

H1(T )
≤ C2

∑

T
diam(T )2|u|2H2(T ), ∀u ∈ H2(T ).
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Letting md denote the maximum diameter of all T ∈ Ω, we have that

∑

T

∣∣∣∣u− I0P0u
∣∣∣∣2

H1(T )
≤ C2 m2

d

∑

T
|u|2H2(T ), ∀u ∈ H2(T ).

The sums are now of integrals whose domains are disjoint with union Ω (recall

Definition 2.14). Given this observation, we can rewrite and square root both

sides to get the global estimate

∣∣∣∣u− I0P0u
∣∣∣∣

H1(Ω)
≤ C md|u|H2(Ω), ∀u ∈ H2(Ω).
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Chapter 4

Numerical Stability of Dual Methods

In Chapter 3, we explained how to construct primal and dual discretiza-

tions of the same PDE and showed that both resulted in optimal convergence

estimates as the size of the maximum mesh element shrinks. This begs the

question of how implementation concerns might guide the choice of one method

over the other. Recalling the generic systems (3.5) and (3.6) from Section 3.1,

both have similar structures. However, they may have vastly different nu-

merical properties depending on whether the diagonal Hodge star Mk or the

Whitney Hodge star MWhit
k is used.

While the matrices M and M
−1 are both diagonal and thus result in

fast solvers, they yield a very coarse approximation of the metric information

encoded by ∗. This means a very fine mesh may be needed to get sufficiently

accurate results with M. The richer approximation power of MWhit provides

for a better approximation of metric information, but M
Whit is only sparse

and (MWhit)−1 may be dense. Hence there is a tradeoff between computational

efficiency and accuracy in choosing between the diagonal and Whitney discrete

Hodge stars, with one choice (viz. (MWhit)−1) essentially untenable.

To allow for an accurate alternative to M
−1 and a sparse alternative to
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(MWhit)−1, we introduce a new discrete Hodge star based on the generalized

barycentric functions λi defined in Section 2.10. To motivate the definition,

we begin by proposing a set of functions analogous to the Whitney forms but

defined relative to a dual mesh.

4.1 Whitney-like Interpolation Functions for Dual Meshes

We define the dual Whitney-like interpolant of a dual k-cochain w ∈ Ck

to be

Ik(w) :=
∑

⋆σn−k∈Ck

w(⋆σn−k)W⋆σn−k . (4.1)

whereW⋆σn−k is a basis function associated to the k-dimensional element ⋆σn−k

in the dual mesh. We now define these dual basis functions in 2D and 3D.

Definition 4.1. Let n = 2. The Whitney-like function W⋆σ2−k associated

to the k-dimensional element ⋆σ2−k in a dual mesh is defined as follows.

• Dual Vertices. The function associated to a dual vertex ⋆σ2 := vi is

W⋆σ2 := λi,

where λi is any barycentric function satisfying Definition 2.56. An ex-

ample is the Sibson functions given in Definition 2.59.

• Dual Edges. The function associated to an oriented dual edge ⋆σ1 :=

[vi,vj] is the vector-valued function

W⋆σ1 := λi∇λj − λj∇λi
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• Dual Cells. The scalar-valued function associated to the polygon ⋆σ0

is a constant function on the element:

W⋆σ0 := χ⋆σ0 =

{
1/| ⋆ σ0| on ⋆σ0

0 otherwise

♦

Definition 4.2. Let n = 3. The Whitney-like function W⋆σ3−k associated

to the k-dimensional element ⋆σ3−k in a dual mesh is defined as follows.

• Dual Vertices. The function associated to a dual vertex ⋆σ3 := vi is

W⋆σ3 := λi,

where λi is any barycentric function satisfying Definition 2.56. An ex-

ample is the Sibson functions given in Definition 2.59.

• Dual Edges. The function associated to an oriented dual edge ⋆σ2 :=

[vi,vj] is the vector-valued function

W⋆σ2 := λi∇λj − λj∇λi

• Dual Faces. Consider a dual face ⋆σ1 with m vertices {v0, . . . ,vm−1}.

Partition the face canonically into triangles by adding a vertex c at

the centroid of the face vertices and adding the edges [c,vi]. Define 2-

simplices τi := [c,vi,vi+1], indices taken mod m. Define 3-simplices by

connecting the τi to the endpoint of σ1 inside the polyhedron. Define

W⋆σ1 :=
m−1∑

i=0

|τi|
| ⋆ σ1|Wτiχτi ,
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where χτi is the characteristic function on τi (1 on τi, 0 otherwise) and

Wτi := 2 (λc∇λi ×∇λi+1 − λi∇λc ×∇λi+1 + λi+1∇λc ×∇λi) .

Note thatWτi is the Whitney 2-form associated to face τi of a tetrahedron

and that these tetrahedra partition the entire polyhedra. An example is

shown in Figure 4.1.

• Dual Cells. The scalar-valued function associated to a dual cell ⋆σ0 is

a constant function on the cell:

W⋆σ0 := χ⋆σ0 =

{
1/| ⋆ σ0| on ⋆σ0

0 otherwise

♦

The analogy to the primal Whitney functions is made precise by the

following Lemma.

Lemma 4.3. If ⋆σ0 is a simplex, the dual Whitney functions associated to its

subsimplices are identical to the Whitney functions.

Proof. The generalized barycentric functions reduce to barycentric functions

on simplices. Hence the result follows immediately from the definitions.

Moreover, many of the properties of Whitney functions can be recovered

for dual Whitney functions.
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v1

v2

v3

v4

v0

c τ0
τ1

τ2

τ3
τ4

σ1

Figure 4.1: Sample computation of a Whitney-like form associated to a dual
face ⋆σ1 with vertices vi. By adding the centroid c, we have a canonical de-
composition of ⋆σ1 into triangles τi. A weighted sum of the primal Whitney
function associated with each τi is constructed to define the function for the
face. As shown on the right, each τi, e.g. the shaded triangle, forms a tetrahe-
dron by connecting its vertices to the vertex of σ1 interior to the polyhedron.
Note that in general c need not be the same as σ1 ∩ ⋆σ1.

Theorem 4.4. Let λi denote any set of generalized barycentric functions sat-

isfying Definition 2.56. Then the associated Whitney-like functions satisfy

properties analogous to properties W1-W3 of the Whitney functions. More

precisely, the following conditions hold for n = 2 or 3 with 0 ≤ k ≤ n.

W1. Conformity in HΛk: Ik(w) ∈ HΛk

W2. Local support: supp W⋆σk ⊆
⋃

⋆σ0≻⋆σk

⋆σ0

W3. Interpolation:

∫

⋆σk
i

φ∗(W⋆σk
i
) = 1
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The following property holds for k = 0 when n = 2, using Sibson coordinates.

W4. Optimal Convergence:
∣∣∣∣u− IkPku

∣∣∣∣
HΛk ≤ C md

Proof. The partition of unity property is property B3 in Section 2.10. The

local support property is immediate by construction and is discussed further

in Section 4.2. The optimal convergence property is the result of Theorem 3.25.

To prove the conformity property, we will use the results and notation

of Section 2.4 and Lemma 4.6 given below. We take n = 3 since similar

arguments suffice to prove conformity in n = 2. Figure 4.2 motivates the

proof.

vk
vq

vr

(a) (b)

Figure 4.2: Proof of the conformity property in cases k = 1 and k = 2. In (a),
we depict the observation that on any face not containing vk, λk is identically
0 and hence ∇λk is orthogonal. In (b), we depict, similarly, how ∇λq and
∇λr lie in the same plane as a face containing vq and vr; their cross product
will be a portion of the normal component of the two form associated to the
face and thus is agreed upon by two polyhedra sharing the polygon.

W1, k=0: We need to show u ∈ H1 for

u := I0(w) =
∑

i

w(⋆σ3
i )λi,
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where w is an arbitrary dual 0-cochain. Let F := ⋆σ1 be an arbitrary dual

face such that F = ⋆σ3
1 ∩ ⋆σ3

2. By Corollary 2.35, it suffices to show that

u1 ≡ u2 on F . By Lemma 4.6, u1 and u2 only depend on the vertices vj ∈ F .

Since u1 and u2 are computed by the summation of the same coefficients and

coordinate functions for any x ∈ F , they are identical on F .

W1, k=1: We need to show ~z ∈ H(curl) for

~z := I1(w) =
∑

i

w(⋆σ2
i )W⋆σ2

i
,

where w is an arbitrary dual 1-cochain. Let F := ⋆σ1 be an arbitrary dual

face as before. By Corollary 2.37, it suffices to show TF (~z1) = TF (~z2) where

TF (~zi) is the tangential component of ~zi on F . Note that the W⋆σ2 functions

are comprised of terms of form λp∇λq where ⋆σ2 = [vp,vq]. By Lemma 4.6, if

vp is not a vertex of F then the term is zero on F and if vq is not a vertex of

F then the term is orthogonal to F . Therefore, W⋆σ2 contributes to TF (~zi) if

and only if ⋆σ2 is an edge of F . By the k = 0 case, the values of λi agree on

F , meaning TF (~z1) = TF (~z2).

W1, k=2: We need to show that ~z ∈ H(div) for

~z := I2(w) =
∑

i

w(⋆σ1
i )W⋆σ1

i
,

where w is an arbitrary dual 2-cochain. Let F := ⋆σ1 be an arbitrary dual

face as before. By Corollary 2.37, it suffices to show NF (~z1) = NF (~z2) where

NF (~zi) is the normal component of ~zi on F . Note that the W⋆σ1 functions are

comprised of terms of form

ξp,q,r := λp∇λq ×∇λr
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where p, q, r are vertices on some face (2-cell) of the mesh. In our definition

of W⋆σ1 , the λi functions in ξp,q,r are actually standard barycentric functions

over a tetrahedron inside the polyhedron; this was chosen to ensure that the

interpolation property holds and effectively reduces the conformity proof to the

primal case. As we will now show, however, such reduction is not necessary

to prove conformity; we only need that the λi are some type of generalized

barycentric functions within the polygon.

Denote the vertices of F by {vj}j∈J . We will show that ξp,q,r has a

non-zero normal component on F only if p, q, r ∈ J . If p 6∈ J then λp = 0 on

F by Lemma 4.6, making ξp,q,r = 0 on F , as well. If p ∈ J but q, r 6∈ J , then

∇λq and ∇λr are both orthogonal to F on F by Lemma 4.6. Hence, their

cross product is zero and again ξp,q,r = 0 on F . If p, q ∈ J but r 6∈ J then

again ∇λr ⊥ F on F . Since ∇λq ×∇λr ⊥ ∇λr, we conclude that ξp,q,r ∈ F on

F , meaning it has no normal component. The same argument holds for the

case p, r ∈ J , q 6∈ J . The only remaining case is p, q, r ∈ J , proving our claim.

Since ξp,q,r is only a term of W⋆σ1(= WF ), we conclude that NF (~zi) is

determined by W⋆σ1 alone. By the k = 0 case, the values of λi agree on F ,

meaning NF (~z1) = NF (~z2).

W1, k=3: We observe that I3(w) is piecewise constant over each dual cell

⋆σ0. Since w is finite-valued and we have a finite number of cells, I3(w) ∈

L2 = HΛ3.

Now we address the interpolation property. Again we take n = 3 since
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the n = 2 proofs are essentially identical.

W3, k=0: We must show that λi evaluated at the ith dual vertex is 1, which

is immediate from property B5 in Section 2.10. In notation,

∫

⋆σ3
i

φ∗(W⋆σ3
i
) = λi(⋆σ

3
i ) = 1.

W3, k=1: Without loss of generality, suppose eij is an edge oriented from

dual vertex vi to dual vertex vj. Observe that

∫

eij

λi∇λj =
1

|eij|

∫

eij

λi(∇λj · ~eij),

where ~eij is the vector in the direction of eij with length |eij|. On eij,

∇λj · ~eij = T (∇λj) · ~eij = |T (∇λj)||~eij|, (4.2)

where T (∇λj) is the tangential projection of ∇λj on eij. Further, on eij,

T (∇λj) is the same as the derivative of λj in the direction of eij. Since λj is

the linear function satisfying λj(vk) = δjk on eij (by the boundary agreement

property B6 from Section 2.10), we have that T (∇λj) = 1/|eij|. Therefore

(4.2) is equal to 1 and, by similar reasoning, we have that

∫

eij

λi∇λj − λj∇λi =
1

|eij|

∫

eij

λi + λj =
1

|eij|

∫

eij

1 = 1.

Letting ⋆σ2
k := eij, we have shown that

∫

⋆σ2
k

φ∗(W⋆σ2
k
) = 1,
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W3, k=2: We first prove the primal version of this case. Consider a tetrahe-

dron σ3 defined by a face σ2 and vertex v. Let n̂ denote the outward normal

to σ3 on σ2. By geometric arguments [17, page 141], it follows that

Wσ2 · n̂ =
alt(σ2,v)

3|σ3| ,

where alt(σ2,v) denotes the altitude of σ3 from σ2 to v. Using the standard

volume equation |σ3| = |σ2|alt(σ2,v)/3, we have that

∫

σ2

Wσ2 · n̂ =

∫

σ2

1

|σ2| = 1,

as desired. For a dual face ⋆σ1 decomposed into triangles τi,

∫

⋆σ1

W⋆σ1 · n̂ =
m−1∑

i=0

|τi|
| ⋆ σ1|

∫

τi

Wτi · n̂ =
m−1∑

i=0

|τi|
| ⋆ σ1| = 1,

since the τi partition ⋆σ
1.

W3, k=3: Let u ∈ C3
. Then

{
P3I3u

}
i
=

∫

⋆σ0
i

φ∗(W⋆σ0
i
) =

∫

⋆σ0
i

1

| ⋆ σ0
i |

= 1

Corollary 4.5. The Whitney functions on a primal mesh satisfy the interpo-

lation property W3 and the conformity property W1.

Proof. By Lemma 4.3, Theorem 4.4 suffices as a proof for Whitney functions

on a primal mesh.
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Lemma 4.6. Let ⋆σ0 be a cell in a dual mesh and F := ⋆σ1 a codimension

one face. Denote the vertices of F by {vj}j∈J . Let vi be any vertex of ⋆σ0. If

i 6∈ J then λi ≡ 0 on F and ∇λi is normal to F on F , pointing inward.

Proof. The first statement is a consequence of the boundary agreement prop-

erty B6 from Definition 2.56 in Section 2.10. This implies F is part of the

zero level set of λi, from which it follows that ∇λi is orthogonal to F on F . It

points inward since the support of λi has support in ⋆σ
0 but not on the other

side of F .

Remark 4.7. It seems unlikely that a commutativity property between the

exterior derivative and the Ik operator will hold. This is due to the fact that

the proof of W5 relies strongly on the fact that a k-dimensional cell in a primal

mesh is a simplex and hence has k + 1 vertices. Since dual cells certainly do

not have this property, we cannot expect a similar result for them. This lies

in contrast to some claims in the literature that the exterior derivative and

Whitney-like operators commute over rectangular meshes - they do not. The

lack of commutativity makes proofs of discretization stability using Ik more

difficult, but not impossible, as exhibited by Theorem 3.25.

4.2
(
M

Dual
k

)−1
: A Sparse Inverse Discrete Hodge Star

We use the dual interpolants to define a dual discrete Hodge star by

(
M

Dual
k

)−1

ij
:=
(
W⋆σk

i
,W⋆σk

j

)
. (4.3)
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The inner product here is the standard integration of scalar or vector valued

functions over the dual domain ⋆K. For instance, in the case k = 3, we have

((MDual
3 )−1)ij :=

(
W⋆σ3

i
,W⋆σ3

j

)
=

∫

⋆K

λiλj.

The formulation for other k values will similarly involve integrals of the λi func-

tions. A comparison of MDiag
k , MWhit

k and
(
M

Dual
k

)−1
is shown in Figure 4.3.

M
Diag
1 M

Whit
1

(
M

Dual
1

)−1

Figure 4.3: The various discrete Hodge stars depend on different aspects of
mesh geometry as shown in this 2D examples. The diagonal Hodge star (left)
computes ratios of sizes of primal-dual element pairs. The Whitney Hodge
star (middle) has entries of Whitney functions integrated against each other.
The support of a particular Wσ1

i
function is shown in grey; the integral of its

projection to the bold edge has value 1. The Dual Hodge star (right) that we
propose has entries of dual Whitney functions integrated against each other.
The support of a particularW⋆σ1

i
is shown in blue; the integral of its projection

to the bold dual edge has value 1.

We note that MDual
k may, in the general case, be full, but this is of no

concern; the point was to have a sparse inverse discrete Hodge star.

Lemma 4.8. (MDual
k )−1 is sparse.
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Proof. Observe that W⋆σk has localized support by construction. Entry ij of

(MDual
k )−1 will be non-zero only if ⋆σk

i and ⋆σk
j are adjacent. Thus each row

of the matrix will have at most as many non-zero entries as ⋆σk
i has adjacent

n− k cells, meaning the matrix is sparse.

We now prove a more specific characterization of the sparsity structure

of MWhit
k and (MDual

k )−1 over a mesh K and its dual mesh ⋆K.

Lemma 4.9. Entry ij in M
Whit
k is non-zero only if there exists σn ∈ K such

that σn has at least one vertex from σk
i and one vertex from σk

j .

Proof. Computing entry ij in M
Whit
k involves [12] summing terms of the form

(∫

K

λ1λ2

)
det
(
V T
I WJ

)
(4.4)

where λ1, λ2 are barycentric functions associated to v1 ∈ σk
i , v2 ∈ σk

j , respec-

tively; I is a list of k vertices from σk
i not including v1; J is a list of k vertices

from σk
j not including v2; and VI , WJ are n× k matrices. The pth column of

VI is the vector ∇λp where λp is the barycentric function associated to the pth

entry in I. The qth column ofWJ is the vector ∇λq where λq is the barycentric

function associated to the qth entry in J .

Observe that the support of the barycentric function associated to ver-

tex v is contained within the n-simplices touching v. Thus, if there is no σn

with at least one vertex from σk
i and one vertex from σk

j , the λ1 and λ2 ap-

pearing in (4.4) will always have disjoint support, making the entry zero.
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Using the same kind of reasoning, we have a similar result for our dual

discrete Hodge star.

Lemma 4.10. Entry ij in (MDual
k )−1 is non-zero only if there exists ⋆σ0 ∈ ⋆K

such that ⋆σ0 has at least one vertex from ⋆σk
i and one vertex from ⋆σk

j .

The number of k-simplices in an n-simplex is
(
n+1
k+1

)
which gives the

following corollary.

Corollary 4.11. Let A(σk) denote the number of n-simplices in K incident

on at least one vertex from σk. Then the number of non-zero entries in row i

of MWhit
k or row i of (MDual

k )−1 is at most
(
n+1
k+1

)
A(σk

i ).

The bound can be sharpened for particular choices of n and k or if

additional assumptions are made about K. As stated, however, the corol-

lary provides a simple means for evaluating the computational expense of a

particular discretization scheme.

Since
(
M

Dual
k

)−1
was defined in analogy to M

Whit
k , it satisfies a scaling

property similar to that of MWhit
k .

Lemma 4.12. Let K be a finite primal mesh with n = 3. Define a functional

Qk : C
3−k → R by

Qk(b) :=
〈
(MDual

k )−1b,b
〉

(4.5)

For any cochains a ∈ Ck and b ∈ C3−k
, the quotients

||a||2Ck

Qk(Mka)
and

||b||2C3−k

Qk(b)

are unaffected if K is uniformly scaled by a positive factor s ∈ R.
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Proof. The proof closely mimics that of Lemma 2.55. We start with the claim

for dual cochains. By (2.17), we have that ||b||2C3−k
(sK)

= s2k−3||b||2C3−k . Hence,

it suffices to show that (MDual
k )−1 also scales as s2k−3.

Note that the chain rule as stated in (2.16) still applies if the λi are

replaced by the generalized barycentric functions λi. From Definition 4.1, we

see that W⋆σ0 scales as 1/s3 since | ⋆ σ0| is a volume measurement. Further,

for k 6= 0, W⋆σk has exactly 3 − k terms of the type ∇λi appearing in each

summand of its expression. Let (MDual
k,s )−1

ij denote the ijth entry of (MDual
k )−1

on the scaled mesh and let 0 ≤ k ≤ 3. Then

(MDual
k,s )−1

ij =

∫

sK

1

s3−k
W⋆σk

i

(x
s

)
· 1

s3−k
W⋆σk

j

(x
s

)

=
s3

s2(3−k)

∫

K

W⋆σk
i
(x) · W⋆σk

j
(x) = s2k−3(MDual

k )−1
ij ,

as desired. For the primal cochain case, we have from (2.15) that ||a||2Ck(sK) =

s3−2k||a||2Ck . Observe that

Qk(Mka) = (Mka)
T (MDual

k )−1(Mka).

Thus, the value of Qk(Mka) scales as s
3−2ks2k−3s3−2k = s3−2k, as desired.

This scaling result suggests that we could have defined the cochain

norms using
(
M

Dual
k

)−1
and maintained the stability results. More formally,

we have the following result akin to Lemma 3.7.

Lemma 4.13. Let Ω be a contractible, compact domain in R
3 with primal

and dual domain meshes of a finite number of elements. Let md denote
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the maximum diameter of a mesh element and assume that we have a nice

refinement technique. Let a be a dual k-cochain. There exists a constant

α > 0 independent of md such that

α
∣∣∣∣Ika

∣∣∣∣
L2 ≤ ||a||Ck ,

where the norm on the left is interpreted as [L2]3 if k = 1 or 2.

Proof. A binomial expansion gives the equality

∣∣∣∣Ika
∣∣∣∣2

L2 =

∫

Ω

∣∣∣∣∣∣
∑

⋆σ3−k
i ∈Ck

a(⋆σ3−k
i )Wσ3−k

i

∣∣∣∣∣∣

2

=< a,
(
M

Dual
3−k

)−1
a >=: Q3−k(a).

Hence Lemma 4.12 and the nice refinement assumption allow us to conclude

that there exists a uniform bound

||a||2Ck

∣∣∣∣Ika
∣∣∣∣2

L2

≥ α2,

for some constant α dependent on the element shape quality parameters but

not the size or orientation of the element.

Lemma 4.13 says that the energy norm on cochains induced by the

dual interpolation map Ik is bounded in the same way as the energy norm

on cochains induced by the composed map ∗In−kM
−1
n−k. This was an essen-

tial ingredient in our proofs of discretization stability in Chapter 3 and thus

provides additional evidence for the naturalness of our approach.
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4.3 Improved Condition Numbers with
(
M

Dual
k

)−1

To maintain the numerical stability of a DEC-based method, the dis-

crete Hodge star matrix should have a bounded condition number. Put differ-

ently, the entries of the matrix should be roughly the same order of magnitude.

This requirement is frequently considered from the context of numerical anal-

ysis, but is often absent from the literature on discrete operators.

We first consider the size of entries in the diagonal Hodge star Mk.

These depend upon the relative size of dual-primal pairs, i.e. | ⋆ σk|/|σk|, sug-

gesting that geometric criteria on primal elements alone will not be sufficient

to control the condition number of the discrete Hodge star matrix. We show

some examples in Figures 4.4 and 4.5.

σ1

⋆σ1

σ1

⋆σ1 σ2

⋆σ2

(a) (b) (c)

Figure 4.4: Examples illustrating how the measure of a primal simplex σk

(black) and its dual ⋆σk (red) need not be the same order of magnitude. (a)
In this 2D example, the ratio | ⋆ σ1|/|σ1| can be made arbitrarily small by
increasing the length of σ1. (b) The ratio | ⋆ σ1|/|σ1| can be made arbitrarily
large by decreasing the length of σ1. (c) The ratio | ⋆ σ2|/|σ2| can be made
arbitrarily large by decreasing the area of σ2. Thus, a discrete Hodge star
involving terms of the form | ⋆ σk|/|σk| may have a bad condition number
unless primal and dual mesh quality is controlled.

For M
Whit
k , on the other hand, the size of the matrix entries are con-
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Figure 4.5: Graded meshes also present a problem for discrete Hodge stars
involving primal-dual size ratios. The primal mesh shown here induces a wide
variation in values of | ⋆ σk|/|σk| for k = 0, 1, 2. This can cause ill-conditioned
Mk matrices, resulting in numerical instability.

trolled by the size of the inner products of Whitney basis forms. The integrals

in (4.4) are on the order of the size of |σk|, meaning again that a large grada-

tion in primal mesh element size could produce large condition numbers and

hence numerical instability. Since it does not involve the size of dual mesh

elements, however, MWhit
k is more numerically stable against shape irregulari-

ties of dual mesh elements. Analogously, (MDual
k )−1 is more numerically stable

against shape irregularities of primal mesh elements.

To provide concrete evidence for our intuitive numerical stability claims,

we present a simple example in 2D showing how M
Diag
1 and M

Whit
1 can have

condition numbers an order of magnitude worse than (MDual
1 )−1 on the same

mesh. This serves as a proof of concept that the DEC-based dual formula-

tion of a problem can provide practical advantages in cases of difficult mesh

geometry.

In the 2D mesh shown in Figure 4.6, the labeled vertices of the primal
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σ12

σ13σ14

σ23σ24

v1

v2

v3v4

Figure 4.6: Mesh used for sample calculation of M1 matrices. The vertices
have coordinates v1 = (0, 0), v2 = (0, 1), v3 = (P, 1

2
), v4 = (−P, 1

2
).

mesh have coordinates v1 = (0, 0), v2 = (0, 1), v3 = (P, 1
2
), and v4 = (−P, 1

2
),

where P is a free parameter we can adjust to modify the geometry. The

remaining vertices are chosen so that they form equilateral triangles with edges

σ13, σ23, σ14, and σ24, as shown. The orthogonal, circumcenter-based dual mesh

is shown in red.

Without loss of generality, fix any ordering on the mesh edges, begin-

ning with

{σ12, σ13, σ14, σ23, σ24, . . .}. (4.6)

We first calculate the upper left 5×5 block of each matrix, yielding the matrix

values assigned to all possible interactions between pairs of these first five
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edges. Using the circumcentric dual mesh and definition (2.9), we compute

M
Diag
1 =




4P 2 − 1

4P
0 0 0 0 · · ·

0 ̺ 0 0 0 · · ·

0 0 ̺ 0 0 · · ·

0 0 0 ̺ 0 · · ·

0 0 0 0 ̺ · · ·
...

...
...

...
...

. . .




(4.7)

where ̺ = 1
4P 4 + P√

3+12P 2
. Since M

Diag
1 is diagonal, its condition number

is the ratio of its largest diagonal entry to its smallest. The uncomputed

diagonal entries will be very close to ̺ meaning the condition number can be

approximated as

cond
(
M

Diag
1

)
≈ 4P 2 − 1

4P
/̺ ∈ O(P ).

Using the definition of MWhit
1 given in (2.11), we can also compute

M
Whit
1 =




α β β β β · · ·

β γ 0 δ 0 · · ·

β 0 γ 0 δ · · ·

β δ 0 γ 0 · · ·

β 0 δ 0 γ · · ·
...

...
...

...
...

. . .




(4.8)

where α = 12P 2+1
24P

, β = 4P 2−1
48P

, γ = 12P 2+20
√
3P+21

144P
, and δ = 4P 2−5

48P
. We note that

some of the structure of MWhit
1 suggested by (4.8) is an artifice of our ordering
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of the edges as stated in (4.6). However, the remaining diagonal entries of

M
Whit
1 are all close to γ, the entire matrix is symmetric, and the remaining

non-zero off-diagonal terms are roughly the same size. Thus, the eigenvalues of

the 5× 5 matrix shown in (4.8) allow us to approximate the condition number

of MWhit
1 . Using Mathematica, we find analytical expressions for the max and

min eigenvalues of the 5× 5 matrix and take their ratio to approximate

cond
(
M

Whit
1

)
≈ 24P 2 + 5

√
3P +

√
288P 4 − 120

√
3P 3 + 3P 2 + 9 + 3

10
√
3P + 18

∈ O(P )

Finally, we compute (MDual
1 )−1 using the Sibson functions (Definition 2.59)

over the barycentric dual mesh, according to definition (4.3). This yields

(
M

Dual
1

)−1
=




ϑ ζ ζ ζ ζ · · ·

ζ θ κ ξ 0 · · ·

ζ κ θ 0 ξ · · ·

ζ ξ 0 θ κ · · ·

ζ 0 ξ κ θ · · ·
...

...
...

...
...

. . .




(4.9)

where ϑ =
(
η⋆σ1

12
, η⋆σ1

12

)
, ζ =

(
η⋆σ1

12
, η⋆σ1

13

)
, θ =

(
η⋆σ1

13
, η⋆σ1

13

)
, κ =

(
η⋆σ1

13
, η⋆σ1

14

)

and ξ =
(
η⋆σ1

13
, η⋆σ1

23

)
. Note that analytical expressions of these inner products

are not feasible due to the need to compute areas of intersection of irregular

polygons in the definition of the λ functions. Instead, using Matlab, we create

a simple grid-based quadrature method to estimate the entries of
(
M

Dual
1

)−1

for various values of P . As withM
Whit
1 , we then estimate the condition number
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of the entire matrix by the ratio of the max and min eigenvalues of the 5× 5

matrix given in (4.9).

We tested the cases P = 2, 5, and 10. The integral required to compute

ξ has support outside of the portion of the dual mesh shown in Figure 4.6.

We thus set ξ to be the same as ζ, since both are inner products associated to

adjacent edges in the dual mesh. The computed values of κ were very small, as

expected; we found that setting κ to zero did not affect the condition number

estimate. Our results are summarized in Table 4.1.

P cond
(
M

Diag
1

)
cond

(
M

Whit
1

)
cond

((
M

Dual
1

)−1
)

2 6.3 3.2 1.5

5 17.2 9.9 1.3

10 34.6 21.6 1.4

Table 4.1: Comparison of condition numbers of different discrete Hodge stars
for various values of P .

Our numerical experiments thus provide evidence for the claim

cond
(
(MDual

1 )−1
)
∈ O(1).

The above example confirms that while our dual discrete Hodge star has

an analogous definition to the primal discrete Hodge star, its condition number

is indeed controlled by the geometric properties of the dual mesh elements, not

those of the primal mesh elements. This fact is especially useful for problems on

tetrahedral meshes where slivers (narrow, nearly planar tetrahedra) frequently

occur and are difficult to remove.
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We conclude with a more general conjecture. The example just pre-

sented provides evidence for the case n = 2, k = 1.

Conjecture 4.14. The condition number of
(
M

Dual
n−k

)−1
is governed by differ-

ent mesh geometry properties than the condition number of MDiag
k and M

Whit
k .
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Chapter 5

Conclusions and Future Work

This thesis can be viewed as a set of initial results toward a much

broader theory of dual discretization methods. We have shown that discretiza-

tion stability can be achieved using dual meshes as part of certain types of

mixed methods (Sections 3.1-3.4) as well as in single variable, node-based

methods in 2D (Section 3.6). Moreover, we have shown that Whitney-like

functions with the proper conformity can be constructed in a natural way

over 2D or 3D dual meshes (Section 4.1) and that using a discrete Hodge star

associated with such functions may offer improved numerical stability results

(Section 4.3). We now discuss a few possible directions that can be pursued

from these beginnings.

Higher order Ik functions. The interpolation functions we defined

are ‘lowest order’ in the sense that are linear in λi. A natural question to

consider is how these might be extended toward higher order basis functions

which maintain HΛk conformity but obtain faster convergence estimates for

the same data regularity assumptions. For primal discretization methods, this

question has been studied in many papers relating to FEEC, for instance [3,

6, 49]. From a DEC standpoint, however, these approaches are less attractive
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since the higher order Ik functions have many degrees of freedom associated

with simplices of dimension greater than k.

To address this problem, Rapetti and Bossavit [78, 79] have given an

alternate construction of higher order Whitney forms which keeps the degrees

of freedom for a k-form associated with k-simplices. Their approach is based

on ideas from Hiptmair [57] and others, but ultimately produces spanning

sets larger of dimension larger than the requisite basis. As a result, certain

functions must be discarded and the method relies on heuristics. Nevertheless,

the large body of work on the topic of higher order interpolation points toward

the possibility of higher order Ik functions being developed.

Spectral analysis of MWhit
k and

(
M

Dual
k

)−1
As Conjecture 4.14 sug-

gests, our dual discrete Hodge star may result in better conditioned linear

systems in certain circumstances. We have shown in Lemma 4.13 that Ik is

bounded in an analogous sense to the Ik operator. Note that if we consider

the dual cochain a with all entries 1 in this case, the result is close to an upper

bound on the matrix 2-norm of
(
M

Dual
k

)−1
. The tools of spectral analysis may

aid in proving specific results along these lines.

Surface finite elements. All the methods presented in this thesis

are for ‘flat’ domains, i.e. n-manifolds with boundary embedded in R
n. How-

ever, many important PDE problems are formulated and approximated using

boundary domains, especially meshes of two-dimensional surfaces embedded

in R
3. Of relevance here is the work by Dziuk [36] for nodal finite elements

on triangulated surfaces and its extension by Demlow [31] for higher order ap-
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proximation. Holst and Stern [61] have recently developed a framework that

generalizes those works by an extension of FEEC theory. Carrying out a simi-

lar type of analysis from a DEC perspective could allow for dual discretization

methods on these sorts of boundary domains.

Alternate generalizations of barycentric coordinates. As men-

tioned in Section 2.10, the Sibson coordinates used in this paper are but one

in a stable of many possible generalized barycentric coordinates. We have al-

ready analyzed the how the discretization stability estimates associated to a

few of these types have distinct dependencies on geometric properties of 2D

dual meshes [48]; a similar analysis for 3D dual meshes is underway.

Moreover, while many of these generalized coordinates have been imple-

mented in computer graphics contexts, few have been incorporated into finite

element codes as we have proposed here. The implementation of dual dis-

cretization methods with various coordinate definitions will help reveal which

type in practice offers the best balance between accuracy of approximation

and speed of computation.
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Appendices
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Appendix A

Continuous Hodge Star

The operator ∗ requires some work to be defined in a general sense as

its definition has to be shown to be independent of the selected basis. We

outline the standard approach to its definition here; more details can be found

in many differential topology textbooks such as [1, 52].

Definition A.1. Let V be vector space of dimension n with a real inner

product < ·, · >V : V × V → R. The inner product on Λ(V ) denoted by

< ·, · > is defined as follows. Let {v1, . . . , vn} be a basis of V . We say that

elements of the form vi1 ∧ . . . ∧ vik have grading k. Define the inner product

of elements with different gradings to be zero. Define

< vi1 ∧ . . . ∧ vik , vj1 ∧ . . . ∧ vjk >:= det




< vi1 , vj1 >V · · · < vi1 , vjk >V
...

. . .
...

< vik , vj1 >V · · · < vik , vjk >V




For the inner product of arbitrary elements of Λ(V ), extend the above defini-

tions bilinearly. ♦

We have a general result akin to Theorem 2.4.

Lemma A.2. If {e1, . . . , en} is an orthonormal basis of V then

{ei1 ∧ . . . ∧ eik : 0 ≤ i1 < · · · < ik ≤ n}
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is an orthonormal basis of Λ(V ).

The proof is lengthy but straightforward.

Lemma A.3. Let V be a real vector space of dimension n with a real inner

product < ·, · >V : V × V → R. Let {e1, . . . , en} be an orthonormal basis of V .

Define gij by

gij :=< ei, ej >V .

Given arbitrary v :=
∑
viei and w :=

∑
wiei (with vi, wi ∈ R), write

< v,w >V=
n∑

i,j=1

vigijwj.

Then (gij) forms a symmetric, positive definite, invertible n by n matrix.

Proof (Sketch): The symmetry follows from symmetry of the inner product.

The positive definite claim comes from positive nature of inner product. In-

vertibility is a consequence of positive definiteness.

Definition A.4. Let V be vector space of dimension n with a real inner

product < ·, · >V : V × V → R. The inner product on Λ(V ) denoted by

< ·, · > is defined as follows. Let {e1, . . . , en} be a basis of V . Let (gij) be the

matrix defined in Lemma A.3 and (gij) its inverse. Let α, β ∈ Λk(V ). Let I

denote an increasing sequence of k indices i1 < · · · < ik. Then α and β have

unique expansions

α =
∑

I

αIe
I , β =

∑

I

βIe
I
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where αI , βI ∈ R and eI := ei1 ∧ . . . ∧ eik . Define

βI :=
∑

J

gi1j1 · · · gikjkβJ

where J also ranges over increasing sequences of k indices j1 < · · · < jk. Define

< α, β >:=
∑

I

αIβ
I =

∑

I

[
αI

∑

J

gi1j1 · · · gikjkβJ
]

♦

Definition A.5. Let {e1, . . . , en} be an orthonormal basis for Λ(V ) with pos-

itive orientation. The Hodge Star operator denoted by ∗ is

∗ : Λk(V ) → Λn−k(V ),

defined as follows. For 0 < k < n, let σ ∈ Sn satisfy σ(1) < · · · < σ(k) and

σ(k + 1) < · · · < σ(n). Then ∗ is defined by

∗
(
eσ(1) ∧ . . . ∧ eσ(k)

)
:= sign(σ)

(
eσ(k+1) ∧ . . . ∧ eσ(n)

)
.

For k = 0 and k = n, ∗ is defined by

∗(1) = ±e1 ∧ · · · ∧ en and ∗ (e1 ∧ · · · ∧ en) = ±1

where the sign is “+” if e1∧· · ·∧en lies in the component of Λn(V ) determined

by the orientation and “-” otherwise. ♦

Lemma A.6. The Hodge Star is the unique operator satisfying the relationship

α ∧ ∗β =< α, β > µ ∀α, β ∈ Λk(V ), (A.1)

where µ is the volume element of Λ(V ). Therefore, ∗ is well-defined.
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Proof. First we show that ∗ satisfies (A.1) and then show that it must be

unique. Fix an orthonormal basis {e1, . . . , en} of V such that µ = e1∧ . . .∧ en.

Let α := ei1 ∧ . . . ∧ eik , β := eσ(1) ∧ . . . ∧ eσ(k) with i1 < · · · < ik, σ(1) <

· · · < σ(k), and σ(k + 1) < · · · < σ(n), σ ∈ Sn. Let I := {1, . . . , n}. Observe

that σ : I → I is an isomorphism and i1, . . . ik are distinct elements of I.

Therefore, either there exists L such that iL ∈ {σ(l)}, l = k + 1, . . . , n or

{ij} = {σ(j)}, j = 1, . . . , k. In the former case, eiL appears twice in α ∧ ∗β

meaning α ∧ ∗β = 0. In the latter case, both sequences are strictly increasing

with respect to j meaning ij = σ(j) for j = 1, . . . , k, and hence α = β. Now

observe that by definition

< α, β >= det(< eim , eσ(n) >V )mn.

The only non-zero entries of the matrix must lie on the diagonal since the ei

are an orthonormal basis. In the former case, iL 6∈ {σ(1), . . . , σ(k)} so that

the Lth row of the matrix is all zeros, yielding < α, β >= 0 as desired. In the

latter case, each diagonal entry is < eσ(j), eσ(j) >V= 1 so that < α, β > (=<

α, α >) = 1. Hence

α ∧ ∗α = (eσ(1) ∧ . . . ∧ eσ(k)) ∧ (sign σ)eσ(k+1) ∧ . . . ∧ eσ(n)

= (sign σ)eσ(1) ∧ . . . ∧ eσ(n)

= e1 ∧ . . . ∧ en

= < α, α > µ
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We note that ∗ operates on forms in a natural way since Tx(Ω)
∗ is a

vector space and a form is a smooth choice of bases for these spaces as x ranges

over Ω.
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